Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 4400 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu X, Liu H, Liu J, Haley KN, Treadway IA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotech 21:41–46

    Article  CAS  Google Scholar 

  2. Dahan M, Laurence T, Pinaud F, Chemia DS, Alivasatos AP, Sauer M, Weiss S (2001) Time-Gated Biological Imaging by use of Colloidal Quantum Dots. Opt Lett 26:825–827

    Article  PubMed  CAS  Google Scholar 

  3. Quantum Dot Corporation, unpublished results

    Google Scholar 

  4. Qu L, Peng ZA, Peng X (2001) Alternative Routes toward High Quality CdSe Nanocrystals. Nano Lett 1:333–337

    Article  CAS  Google Scholar 

  5. Peng ZA, Peng X (2002) Nearly Monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Amer Chem Soc 124:3343–3353

    Article  CAS  Google Scholar 

  6. Chen Y, Rosenzweig Z (2002) Luminescent CdS Quantum Dots as Selective Ion Probes. Anal Chem 74:5132–5138

    Article  PubMed  CAS  Google Scholar 

  7. Dabboussi BO, Rodriguez-Viejo J, Mikulec FV, Heino JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  Google Scholar 

  8. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar V, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Amer Chem Soc 122:12,142–12,150

    Article  CAS  Google Scholar 

  9. Potapova I, Mruk R, Prehl S, Zentel R, Basche T, Mews A (2002) Semiconductor nanocrystals with multifunctional polymer ligands. J Amer Chem Soc 125:320, 321

    Article  Google Scholar 

  10. Invitrogen Corp. website. http://probes.invitrogen.com/products/qdot/reactive.html

  11. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19:1181–1191

    Article  PubMed  CAS  Google Scholar 

  12. Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura RY (2005) Three-dimensional imaging of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (Quantum dot) and confocal laser scanning microscopy techniques. J Histochem Cytochem 53:833–838

    Article  PubMed  CAS  Google Scholar 

  13. Giepmans BN, Deerinck TJ, Smarr BL, Jones YZ, Ellisman MH (2005) Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat Methods 2:743–749

    Article  PubMed  CAS  Google Scholar 

  14. Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Amer Chem Soc 127:1656–1657

    Article  CAS  Google Scholar 

  15. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots with large two-photon cross-sections for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  PubMed  CAS  Google Scholar 

  16. Swift JL, Heuff R, Cramb DT (2006) A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots. Biophys J 90:1396–1410

    Article  PubMed  CAS  Google Scholar 

  17. Ferrara DE, Weiss D, Carnell PH, Vito RP, Vega D, Gao X, Nie S, Taylor WR (2006) Quantitative 3D fluorescence technique for the analysis of en face preparations of arterial walls using quantum dot nanocrystals and two-photon excitation laser scanning microscopy. Am J Physiol Regul Integr Comp Physiol 290:R114–123

    Article  PubMed  CAS  Google Scholar 

  18. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotech 21:47–51

    Article  CAS  Google Scholar 

  19. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–1762

    Article  PubMed  CAS  Google Scholar 

  20. Gu W, Pellegrino T, Parak WJ, Boudreau R, Le Gros MA, Gerion D, Alivisatos AP, Larabell CA (2005) Quantum dot-based cell motility assay. Science STKE:15

    Google Scholar 

  21. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    Article  PubMed  CAS  Google Scholar 

  22. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  PubMed  CAS  Google Scholar 

  23. Courty S, Bouzigues C, Luccardini C, Ehrensperger MV, Bonneau S, Dahan M (2006) Tracking individual proteins in living cells using single quantum dot imaging. Methods Enzymol 414:211–228

    Article  PubMed  CAS  Google Scholar 

  24. Warshaw DM, Kennedy GG, Work SS, Krementsova EB, Beck S, Trybus KM (2005) Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J 88:L30–32

    Article  PubMed  CAS  Google Scholar 

  25. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Nat Acad Sci 99:12,617–12,621

    Article  CAS  Google Scholar 

  26. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86

    Article  PubMed  CAS  Google Scholar 

  27. Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM, Cohn LH, Bawendi MG, Frangioni JV, Mihaljevic T (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 79:269–277

    Article  PubMed  Google Scholar 

  28. Lovric J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  PubMed  Google Scholar 

  29. Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cytotoxi-city caused by quantum dots. Microbiol Immunol 48:669–675

    PubMed  CAS  Google Scholar 

  30. Ryman-Rasmussen, JP, Riviere, JE, Monteiro-Riviere, NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127(1):143–153

    Article  PubMed  CAS  Google Scholar 

  31. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physi-cochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  32. Quantum Dot Corporation, unpublished results

    Google Scholar 

  33. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Amer Chem Soc 124:6378–6382

    Article  CAS  Google Scholar 

  34. Tully E, Hearty S, Leonard P, O'Kennedy R (2006) The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int J Biol Macromol 39:127–134

    Article  PubMed  CAS  Google Scholar 

  35. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 76:684–688

    Article  PubMed  CAS  Google Scholar 

  36. Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131(3):394–401

    Article  PubMed  CAS  Google Scholar 

  37. Hahn MA, Tabb JS, Krauss TD (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Anal Chem 77:4861–4869

    Article  PubMed  CAS  Google Scholar 

  38. Makrides SC, Gasbarro C, Bello JM (2005) Bioconjugation of quantum dot luminescent probes for Western blot analysis. Biotechniques 39:501–506

    Article  PubMed  CAS  Google Scholar 

  39. Kahn E, Vejux A, Menetrier F, Maiza C, Hammann A, Sequeira-Le Grand A, Frouin F, Tourneur Y, Brau F, Riedinger JM, Steinmetz E, Todd-Pokropek A, Lizard G (2006) Analysis of CD36 expression on human monocytic cells and atherosclerotic tissue sections with quantum dots: investigation by flow cytometry and spectral imaging microscopy. Anal Quant Cytol Histol 28:14–26

    PubMed  Google Scholar 

  40. Bocsi J, Lenz D, Mittag A, Varga VS, Molnar B, Tulassay Z, Sack U, Tarnok A (2006) Automated four-color analysis of leukocytes by scanning fluorescence microscopy using quantum dots. Cytometry A 69(3):131–134

    PubMed  Google Scholar 

  41. Chattopadhyay PK, Roederer M (2006) Application of quantum dots to multicolor flow cytometry. In: Walker JM (ed) Methods in molecular biology vol 374: quantum dots: applications in biology. Humana, Totowa, NJ, pp. 175–184

    Google Scholar 

  42. Abrams B, Dubrovsky T (2006) Quantum dots in flow cytometry. In: Walker JM (ed) Methods in molecular biology vol 374: quantum dots: applications in biology. Humana, Totowa, NJ, pp. 185–204

    Google Scholar 

  43. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP, Roederer M (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12:972–977

    Article  PubMed  CAS  Google Scholar 

  44. Chen Q, Ma Q, Wan Y, Su X, Lin Z, Jin Q (2005) Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots. Luminescence 20:251–255

    Article  PubMed  CAS  Google Scholar 

  45. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5(7):581–589

    Article  PubMed  CAS  Google Scholar 

  46. Geho D, Lahar N, Gurnani P, Huebschman M, Herrmann P, Espina V, Shi A, Wulfkuhle J, Garner H, Petricoin E 3rd, Liotta LA, Rosenblatt KP (2005) Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug Chem 16:559–566

    Article  PubMed  CAS  Google Scholar 

  47. Karlin-Neumann G, Sedova M, Falkowski M, Wang Z, Lin S, Jain M (2006) Application of Quantum dots to multi-color microarray experiments: four color genotyping. In: Walker JM (ed) Methods in molecular biology vol 374: quantum dots: applications in biology. Humana, Totowa, NJ, pp. 239–252

    Google Scholar 

  48. Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G, Mericle RA (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS: Mn/ZnS quantum dots. Chem Commun 25:3144–3146

    Article  Google Scholar 

  49. Thorne RG, Nicholson G (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA 103:5567–5572

    Article  PubMed  CAS  Google Scholar 

  50. Pathak S, Cao E, Davidson MC, Jin S, Silva GA (2006) Quantum dot applications to neuroscience: new tools for probing neurons and glia. J Neurosci 26:1893–1895

    Article  PubMed  CAS  Google Scholar 

  51. Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang Y, DeFelice LJ, Blakely RD (2002) Targeting cell surface receptors with ligand-conjugated nanocrystals. J Amer Chem Soc 124:4586–4594

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hotz, C.Z. (2008). Quantum Dots. In: Walker, J.M., Rapley, R. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-375-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-375-6_39

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-370-1

  • Online ISBN: 978-1-60327-375-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics