Skip to main content

Protein Engineering

  • Protocol
Molecular Biomethods Handbook

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marshall SA, Lazar GA, Chirino AJ, Desjarlais JR (2003) Rational design and engineering of therapeutic proteins. Drug Discov Today 8:212–221

    PubMed  CAS  Google Scholar 

  2. Hellinga HW (1997) Rational protein design: combining theory and experiment. Proc Natl Acad Sci USA 94:10015–10017

    PubMed  CAS  Google Scholar 

  3. Creveld LD (2001) Molecular dynamics simulations in rational protein design: stabilization of fusarium solani pisi cutinase against anionic surfactants. University of Groningen

    Google Scholar 

  4. Balland A, Courtney M, Jallat S, Tessier LH, Sondermeyer P, de la Salle H, Harvey R, Degryse E, Tolstoshev P (1985) Use of synthetic oligonucleotides in gene isolation and manipulation. Biochimie 67:725–736

    PubMed  CAS  Google Scholar 

  5. Garvey EP, Matthews CR (1990) Site-directed mutagenesis and its application to protein folding. Biotechnology 14:37–63

    PubMed  CAS  Google Scholar 

  6. Wagner CR, Benkovic SJ (1990) Site directed mutagenesis: a tool for enzyme mechanism dissection. Trends Biotechnol 8:263–270

    PubMed  CAS  Google Scholar 

  7. Kammann M, Laufs J, Schell J, Gronenborn B (1989) Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucleic Acids Res 17:5404

    PubMed  CAS  Google Scholar 

  8. Antikainen NM, Martin SF (2005) Altering protein specificity: techniques and applications. Bioorg Med Chem 13:2701–2716

    PubMed  CAS  Google Scholar 

  9. Desjarlais JR, Clarke ND (1998) Computer search algorithms in protein modification and design. Curr Opin Struct Biol 8:471–475

    PubMed  CAS  Google Scholar 

  10. Voigt CA, Gordon DB, Mayo SL (2000) Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. J Mol Biol 299:789–803

    PubMed  CAS  Google Scholar 

  11. Fishman GS (1995) Monte Carlo: concepts, algorithms, and applications. Springer Verlag, New York

    Google Scholar 

  12. Metropolis NaU, S (1949) The Monte Carlo method. J Am Stat As 44:335

    Google Scholar 

  13. Desmet J, de Maeyer M, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542

    CAS  PubMed  Google Scholar 

  14. Gordon DB, Marshall SA, Mayo SL (1999) Energy functions for protein design. Curr Opin Struct Biol 9:509–513

    PubMed  CAS  Google Scholar 

  15. Pokala N, Handel TM (2001) Review: protein design – where we were, where we are, where we're going. J Struct Biol 134:269–281

    PubMed  CAS  Google Scholar 

  16. Street AG, Mayo SL (1999) Computational protein design. Structure 7:R105–109

    PubMed  CAS  Google Scholar 

  17. van Gunsteren WF, Mark AE (1992) On the interpretation of biochemical data by molecular dynamics computer simulation. Fur J Biochem 204:947–961

    Google Scholar 

  18. Smith GP, Petrenko VA (1997) Phage Display. Chem Rev 97:391–410

    PubMed  CAS  Google Scholar 

  19. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    PubMed  CAS  Google Scholar 

  20. Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072

    PubMed  CAS  Google Scholar 

  21. Willats WG (2002) Phage display: practicalities and prospects. Plant Mol Biol 50:837–854

    PubMed  CAS  Google Scholar 

  22. Jung S, Honegger A, Plückthun A (1999) Selection for improved protein stability by phage display. J Mol Biol 294:163–180

    PubMed  CAS  Google Scholar 

  23. Jaye DL, Geigerman CM, Fuller RE, Akyildiz A, Parkos CA (2004) Direct fluorochrome labeling of phage display library clones for studying binding specificities: applications in flow cytometry and fluorescence microscopy. J Immunol Methods 295:119–127

    PubMed  CAS  Google Scholar 

  24. Steiner D, Forrer P, Stumpp MT, Pluckthun A (2006) Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 24:823–831

    PubMed  CAS  Google Scholar 

  25. Arndt KM, Jung S, Krebber C, Plückthun A (2000) Selectively infective phage technology. Methods Enzymol 328:364–388

    PubMed  CAS  Google Scholar 

  26. Jung S, Arndt KM, Müller KM, Plückthun A (1999) Selectively infective phage (SIP) technology: scope and limitations. J Immunol Methods 231:93–104

    PubMed  CAS  Google Scholar 

  27. Jiang J, Abu-Shilbayeh L, Rao VB (1997) Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect Immun 65:4770–4777

    PubMed  CAS  Google Scholar 

  28. Danner S, Belasco JG (2001) T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci USA 98:12954–12959

    PubMed  CAS  Google Scholar 

  29. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA 91:9022–9026

    PubMed  CAS  Google Scholar 

  30. Wilson DS, Keefe AD, Szostak JW (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci USA 98:3750–3755

    PubMed  CAS  Google Scholar 

  31. Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Plückthun A (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci USA 95:14130–14135

    PubMed  CAS  Google Scholar 

  32. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    PubMed  CAS  Google Scholar 

  33. Ma J, Ptashne M (1988) Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55:443–446

    PubMed  CAS  Google Scholar 

  34. Walhout AJ, Vidal M (2001) High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 24:297–306

    PubMed  CAS  Google Scholar 

  35. Shih HM, Goldman PS, DeMaggio AJ, Hollenberg SM, Goodman RH, Hoekstra MF (1996) A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc Natl Acad Sci USA 93:13896–13901

    PubMed  CAS  Google Scholar 

  36. Vidal M, Brachmann RK, Fattaey A, Harlow E, Boeke JD (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci USA 93:10315–10320

    PubMed  CAS  Google Scholar 

  37. Vidal M, Braun P, Chen E, Boeke JD, Harlow E (1996) Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci USA 93:10321–10326

    PubMed  CAS  Google Scholar 

  38. Aronheim A (1997) Improved efficiency sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives. Nucleic Acids Res 25:3373–3374

    PubMed  CAS  Google Scholar 

  39. Aronheim A, Zandi E, Hennemann H, Elledge SJ, Karin M (1997) Isolation of an AP-1 repressor by a novel method for detecting protein/protein interactions. Mol Cell Biol 17:3094–3102

    PubMed  CAS  Google Scholar 

  40. Köhler F, Müller KM (2003) Adaptation of the Ras-recruitment system to the analysis of interactions between membrane-associated proteins. Nucleic Acids Res 31:e28

    PubMed  Google Scholar 

  41. Osborne MA, Dalton S, Kochan JP (1995) The yeast tribrid system-genetic detection of trans-phosphorylated ITAM-SH2-interactions. Biotechnology (NY) 13:1474–1478

    CAS  Google Scholar 

  42. Zhang J, Lautar S (1996) A yeast three-hybrid method to clone ternary protein complex components. Anal Biochem 242:68–72

    PubMed  CAS  Google Scholar 

  43. Licitra EJ, Liu JO (1996) A three-hybrid system for detecting small lig-and-protein receptor interactions. Proc Natl Acad Sci USA 93:12817–12821

    PubMed  CAS  Google Scholar 

  44. Tafelmeyer P, Johnsson N, Johnsson K (2004) Transforming a (beta/alpha)8-barrel enzyme into a split-protein sensor through directed evolution. Chem Biol 11:681– 689

    PubMed  CAS  Google Scholar 

  45. Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA 91:10340–10344

    PubMed  CAS  Google Scholar 

  46. Pelletier JN, Campbell-Valois FX, Michnick SW (1998) Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc Natl Acad Sci USA 95:12141–12146

    PubMed  CAS  Google Scholar 

  47. Stammers DK, Champness JN, Beddell CR, Dann JG, Eliopoulos E, Geddes AJ, Ogg D, North AC (1987) The structure of mouse L1210 dihydrofolate reductase-drug complexes and the construction of a model of human enzyme. FEBS Lett 218:178–184

    PubMed  CAS  Google Scholar 

  48. Blakley RL (1984). Folates and pterins: chemistry and biochemistry of Folates. In: Blakley RL, Cenkovic S (eds), Folates and pterins: chemistry and biochemistry of folates, Vol. 1. John Wiley & Sons, New York, pp 191–253

    Google Scholar 

  49. Appleman JR, Prendergast N, Delcamp TJ, Freisheim JH, Blakley RL (1988) Kinetics of the formation and isomerization of methotrexate complexes of recom-binant human dihydrofolate reductase. J Biol Chem 263:10304–10313

    PubMed  CAS  Google Scholar 

  50. Buchwalder A, Szadkowski H, Kirschner K (1992) A fully active variant of dihydro-folate reductase with a circularly permuted sequence. Biochemistry 31:1621–1630

    PubMed  CAS  Google Scholar 

  51. Pelletier JN, Arndt KM, Plückthun A, Michnick SW (1999) An in vivo library-versus-library selection of optimized protein–protein interactions. Nat Biotechnol 17:683–690

    PubMed  CAS  Google Scholar 

  52. Rossi F, Charlton CA, Blau HM (1997) Monitoring protein–protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci USA 94:8405–8410

    PubMed  CAS  Google Scholar 

  53. Rossi FM, Blakely BT, Blau HM (2000) Interaction blues: protein interactions monitored in live mammalian cells by beta-galactosidase complementation. Trends Cell Biol 10:119–122

    PubMed  CAS  Google Scholar 

  54. Ullmann A, Perrin D, Jacob F, Monod J (1965) [Identification, by in vitro complementation and purification, of a peptide fraction of Escherichia coli beta-galactosi-dase]. J Mol Biol 12:918–923

    PubMed  CAS  Google Scholar 

  55. Villarejo M, Zamenhof PJ, Zabin I (1972) Beta-galactosidase.In vivo – complementation. J Biol Chem 247:2212–2216

    PubMed  CAS  Google Scholar 

  56. Mohler WA, Blau HM (1996) Gene expression and cell fusion analyzed by lacZ complementation in mammalian cells. Proc Natl Acad Sci USA 93:12423–12427

    PubMed  CAS  Google Scholar 

  57. Beckwith JR (1964) A deletion analysis of the Lac operator region in Escherichia coli. J Mol Biol 78:427–430

    Google Scholar 

  58. Prentki P (1992) Nucleotide sequence of the classical lacZ deletion delta M15. Gene 122:231–232

    PubMed  CAS  Google Scholar 

  59. Galarneau A, Primeau M, Trudeau LE, Michnick SW (2002) Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat Biotechnol 20:619–622

    PubMed  CAS  Google Scholar 

  60. Wehrman T, Kleaveland B, Her JH, Balint RF, Blau HM (2002) Protein–protein interactions monitored in mammalian cells via complementation of beta – lacta-mase enzyme fragments. Proc Natl Acad Sci USA 99:3469–3474

    PubMed  CAS  Google Scholar 

  61. Zlokarnik G, Negulescu PA, Knapp TE, Mere L, Burres N, Feng L, Whitney M, Roemer K, Tsien RY (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279:84–88

    PubMed  CAS  Google Scholar 

  62. Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG (1991) A standard numbering scheme for the class A beta-lactamases. Biochem J 276 (Pt 1) 269–270

    PubMed  CAS  Google Scholar 

  63. Farzaneh S, Chaibi EB, Peduzzi J, Barthelemy M, Labia R, Blazquez J, Baquero F (1996) Implication of lle-69 and Thr-182 residues in kinetic characteristics of IRT-3 (TEM-32) beta-lactamase. Antimicrob Agents Chemother 40:2434–2436

    PubMed  CAS  Google Scholar 

  64. Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein– protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99:15608–15613

    PubMed  CAS  Google Scholar 

  65. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    PubMed  CAS  Google Scholar 

  66. Paulmurugan R, Gambhir SS (2003) Monitoring protein–protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal Chem 75:1584–1589

    PubMed  CAS  Google Scholar 

  67. Remy I, Michnick SW (2006) A highly sensitive protein–protein interaction assay based on Gaussia luciferase. Nat Methods 3:977–979

    PubMed  CAS  Google Scholar 

  68. Ghosh I, AD, H, Regan L (2000) Antiparallel Leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122:5658–5659

    CAS  Google Scholar 

  69. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392– 1395

    PubMed  CAS  Google Scholar 

  70. Abedi MR, Caponigro G, Kamb A (1998) Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res 26:623–630

    PubMed  CAS  Google Scholar 

  71. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    PubMed  CAS  Google Scholar 

  72. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52

    PubMed  CAS  Google Scholar 

  73. Lunder M, Bratkovio T, Doljak B, Kreft S, Urleb U, Strukelj B, Plazar N (2005) Comparison of bacterial and phage display peptide libraries in search of target-binding motif. Appl Biochem Biotechnol 127:125–131

    PubMed  CAS  Google Scholar 

  74. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    PubMed  CAS  Google Scholar 

  75. Gellissen G, Melber K, Janowicz ZA, Dahlems UM, Weydemann U, Piontek M, Strasser AW, Hollenberg CP (1992) Heterologous protein production in yeast. Antonie Van Leeuwenhoek, 62:79–93

    PubMed  CAS  Google Scholar 

  76. Schreuder MP, Brekelmans S, van den Ende H, Klis FM (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast, 9:399–409

    PubMed  CAS  Google Scholar 

  77. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    PubMed  CAS  Google Scholar 

  78. Kieke MC, Shusta EV, Boder ET, Teyton L, Wittrup KD, Kranz DM (1999) Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci USA 96:5651–5656

    PubMed  CAS  Google Scholar 

  79. Richman SA, Healan SJ, Weber KS, Donermeyer DL, Dossett ML, Greenberg PD, Allen PM, Kranz DM (2006) Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng Des Sel 19:255–264

    PubMed  CAS  Google Scholar 

  80. Oker-Blom C, Airenne KJ, Grabherr R (2003) Baculovirus display strategies: Emerging tools for eukaryotic libraries and gene delivery. Brief Funct Genomic Proteomic 2:244–253

    PubMed  CAS  Google Scholar 

  81. Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165

    PubMed  CAS  Google Scholar 

  82. O–Reilly DR, Miller LK, Luckow VA (1992). Baculovirus expression vectors: a laboratory manual 1st ed, W.H. Freeman and Company, New York

    Google Scholar 

  83. Boublik Y, Di Bonito P, Jones IM (1995) Eukaryotic virus display: engineering the major surface glycoprotein of the Autographa californica nuclear polyhedro-sis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology (NY) 13:1079–1084

    CAS  Google Scholar 

  84. Ernst W, Grabherr R, Wegner D, Borth N, Grassauer A, Katinger H (1998) Baculovirus surface display: construction and screening of a eukaryotic epitope library. Nucleic Acids Res 26:1718–1723

    PubMed  CAS  Google Scholar 

  85. Buchholz CJ, Peng KW, Morling FJ, Zhang J, Cosset FL, Russell SJ (1998)In vivo selection of protease cleavage sites from retrovirus display libraries. Nat Biotechnol 16:951–954

    PubMed  CAS  Google Scholar 

  86. Urban JH, Schneider RM, Compte M, Finger C, Cichutek K, Alvarez-Vallina L, Buchholz CJ (2005) Selection of functional human antibodies from retroviral display libraries. Nucleic Acids Res 33:e35

    PubMed  Google Scholar 

  87. Wolkowicz R, Jager GC, Nolan GR (2005) A random peptide library fused to CCR5 for selection of mimetopes expressed on the mammalian cell surface via retroviral vectors. J Biol Chem 280:15195–15201

    PubMed  CAS  Google Scholar 

  88. Ho M, Nagata S, Pastan I (2006) Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci USA 103:9637–9642

    PubMed  CAS  Google Scholar 

  89. Rothe A, Surjadi RN, Power BE (2006) Novel proteins in emulsions using in vitro compartmentalization. Trends Biotechnol 24:587–592

    PubMed  CAS  Google Scholar 

  90. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    PubMed  CAS  Google Scholar 

  91. Leamon JH, Link DK, Egholm M, Rothberg JM (2006) Overview: methods and applications for droplet compartmentalization of biology. Nat Methods 3:541–543

    PubMed  CAS  Google Scholar 

  92. Miller OJ, Bernath K, Agresti JJ, Amitai G, Kelly BT, Mastrobattista E, Taly V, Magdassi S, Tawfik DS, Griffiths AD (2006) Directed evolution by in vitro com-partmentalization. Nat Methods 3:561–570

    PubMed  CAS  Google Scholar 

  93. Ghadessy FJ, Ong JL, Holliger P (2001) Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci USA 98:4552–4557

    PubMed  CAS  Google Scholar 

  94. Ong JL, Loakes D, Jaroslawski S, Too K, Holliger P (2006) Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. J Mol Biol 361:537–550

    PubMed  CAS  Google Scholar 

  95. Doi N, Kumadaki S, Oishi Y, Matsumura N, Yanagawa H (2004)In vitro selection of restriction endonucleases by in vitro compartmentalization. Nucleic Acids Res 32:e95

    PubMed  Google Scholar 

  96. Sepp A, Tawfik DS, Griffiths AD (2002) Microbead display by in vitro compartmen-talisation: selection for binding using flow cytometry. FEBS Lett 532:455–458

    PubMed  CAS  Google Scholar 

  97. Bernath K, Hai M, Mastrobattista E, Griffiths AD, Magdassi S, Tawfik DS (2004)In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting. Anal Biochem 325:151–157

    PubMed  CAS  Google Scholar 

  98. Agresti JJ, Kelly BT, Jaschke A, Griffiths AD (2005) Selection of ribozymes that catalyse multiple-turnover Diels-Alder cycloadditions by using in vitro compart-mentalization. Proc Natl Acad Sci USA 102:16170–16175

    PubMed  CAS  Google Scholar 

  99. Worn A, Pluckthun A (2001) Stability engineering of antibody single-chain Fv fragments. J Mol Biol 305:989–1010

    PubMed  CAS  Google Scholar 

  100. Lin L (1998) Betaseron. Dev Biol Stand 96:97–104

    PubMed  CAS  Google Scholar 

  101. Arakawa T, Prestrelski SJ, Narhi LO, Boone TC, Kenney WC (1993) Cysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed. J Protein Chem 12:525–531

    PubMed  CAS  Google Scholar 

  102. Culajay JF, Blaber SI, Khurana A, Blaber M (2000) Thermodynamic characterization of mutants of human fibroblast growth factor 1 with an increased physiological half-life. Biochemistry 39:7153–7158

    PubMed  CAS  Google Scholar 

  103. Tan PH, Chu V, Stray JE, Hamlin DK, Pettit D, Wilbur DS, Vessella RL, Stayton PS (1998) Engineering the isoelectric point of a renal cell carcinoma targeting antibody greatly enhances scFv solubility. Immunotechnology 4:107–114

    PubMed  CAS  Google Scholar 

  104. Weintraub BD, Szkudlinski MW (1999) Development and in vitro characterization of human recombinant thyrotropin. Thyroid 9:447–450

    PubMed  CAS  Google Scholar 

  105. Grossmann M, Leitolf H, Weintraub BD, Szkudlinski MW (1998) A rational design strategy for protein hormone superagonists. Nat Biotechnol 16:871–875

    PubMed  CAS  Google Scholar 

  106. Siemeister G, Schimer M, Reusch P, Barleon B, Marme D, Martiny-Baron G (1998) An antagonistic vascular endothelial growth factor (VEGF) variant inhibits VEGF-stimulated receptor autophosphorylation and proliferation of human endothelial cells. Proc Natl Acad Sci USA 95:4625–4629

    PubMed  CAS  Google Scholar 

  107. Savino R, Ciapponi L, Lahm A, Demartis A, Cabibbo A, Toniatti C, Delmastro P, Altamura S, Ciliberto G (1994) Rational design of a receptor super-antagonist of human interleukin-6. Embo J 13:5863–5870

    PubMed  CAS  Google Scholar 

  108. Fub G, Cunningham BC, Fukunaga R, Nagata S, Goeddel DV, Wells JA (1992) Rational design of potent antagonists to the human growth hormone receptor. Science 256:1677–1680

    Google Scholar 

  109. Cunningham BC, Lowman HB, Wells JA, Clark RG, Olson K, Fuh GG (1988) Human Growth Hormone Variants, USA

    Google Scholar 

  110. Lu C, Shimaoka M, Ferzly M, Oxvig C, Takagi J, Springer TA (2001) An isolated, surface-expressed I domain of the integrin alphaLbeta2 is sufficient for strong adhesive function when locked in the open conformation with a disulfide bond. Proc Natl Acad Sci USA 98:2387–2392

    PubMed  CAS  Google Scholar 

  111. Shimaoka M, Lu C, Palframan RT, von Andrian UH, McCormack A, Takagi J, Springer TA (2001) Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin alphaL I domains with high affinity and antagonist activity in vivo. Proc Natl Acad Sci USA 98:6009–6014

    PubMed  CAS  Google Scholar 

  112. Shimaoka M, Shifman JM, Jing H, Takagi J, Mayo SL, Springer TA (2000) Computational design of an integrin I domain stabilized in the open high affinity conformation. Nat Struct Biol 7:674–678

    PubMed  CAS  Google Scholar 

  113. DeSantis G, Liu J, Clark DP, Heine A, Wilson IA, Wong CH (2003) Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg Med Chem 11:43–52

    PubMed  CAS  Google Scholar 

  114. Heine A, DeSantis G, Luz JG, Mitchell M, Wong CH, Wilson IA (2001) Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294:369–374

    PubMed  CAS  Google Scholar 

  115. Babu CS, Dudev T, Casareno R, Cowan JA, Lim C (2003) A combined experimental and theoretical study of divalent metal ion selectivity and function in proteins: application to E. coli ribonuclease H1. J Am Chem Soc 125:9318–9328

    PubMed  CAS  Google Scholar 

  116. Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10:895–905

    PubMed  CAS  Google Scholar 

  117. Shifman JM, Mayo SL (2002) Modulating calmodulin binding specificity through computational protein design. J Mol Biol 323:417–423

    PubMed  CAS  Google Scholar 

  118. Havranek JJ, Harbury PB (2003) Automated design of specificity in molecular recognition. Nat Struct Biol 10:45–52

    PubMed  CAS  Google Scholar 

  119. Dwyer MA, Looger LL, Hellinga HW (2004) Computational design of a biologically active enzyme. Science 304:1967–1971

    PubMed  CAS  Google Scholar 

  120. Pedone EM, Bartolucci S, Rossi M, Saviano M (1998) Computational analysis of the thermal stability in thioredoxins: a molecular dynamics approach. J Biomol Struct Dyn 16:437–446

    PubMed  CAS  Google Scholar 

  121. Lazaridis T, Lee I, Karplus M (1997) Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci 6:2589–2605

    PubMed  CAS  Google Scholar 

  122. Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278:82–87

    PubMed  CAS  Google Scholar 

  123. Marvin JS, Hellinga HW (2001) Conversion of a maltose receptor into a zinc biosensor by computational design. Proc Natl Acad Sci USA 98:4955–4960

    PubMed  CAS  Google Scholar 

  124. de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Sci 11:2655–2675

    PubMed  Google Scholar 

  125. Yang W, Jones LM, Isley L, Ye Y, Lee HW, Wilkins A, Liu ZR, Hellinga HW, Malchow R, Ghazi M, Yang JJ (2003) Rational design of a calcium-binding protein. J Am Chem Soc 125:6165–6171

    PubMed  CAS  Google Scholar 

  126. Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190

    PubMed  CAS  Google Scholar 

  127. Samoylova TI, Morrison NE, Globa LP, Cox NR (2006) Peptide phage display: opportunities for development of personalized anti-cancer strategies. Anticancer Agents Med Chem 6:9–17

    PubMed  CAS  Google Scholar 

  128. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. Jama 295:2275–2285

    PubMed  CAS  Google Scholar 

  129. Sieber V, Pluckthun A, Schmid (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16:955–960

    PubMed  CAS  Google Scholar 

  130. Barry MA, Dower WJ, Johnston SA (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 2:299–305

    PubMed  CAS  Google Scholar 

  131. Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W (2006) Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58:1622–1654

    PubMed  CAS  Google Scholar 

  132. Oh Y, Mohiuddin I, Sun Y, Putnam JB, Jr, Hong WK, Arap W, Pasqualini R (2005) Phenotypic diversity of the lung vasculature in experimental models of metastases. Chest 128:596S–600S

    PubMed  Google Scholar 

  133. Essler M, Ruoslahti E (2002) Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vas-culature. Proc Natl Acad Sci USA 99:2252–2257

    PubMed  CAS  Google Scholar 

  134. Rothe A, Hosse RJ, Power BE (2006) Ribosome display for improved biothera-peutic molecules. Expert Opin Biol Ther 6:177–187

    PubMed  CAS  Google Scholar 

  135. Ihara H, Mie M, Funabashi H, Takahashi F, Sawasaki T, Endo Y, Kobatake E (2006)In vitro selection of zinc finger DNA-binding proteins through ribosome display. Biochem Biophys Res Commun 345:1149–1154

    PubMed  CAS  Google Scholar 

  136. Amstutz P, Koch H, Binz HK, Deuber SA, Pluckthun A (2006) Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries. Protein Eng Des Sel 19:219–229

    PubMed  CAS  Google Scholar 

  137. Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L, Wigler MH, Der CJ (1996) Oncogenic Ras activation of Rafmitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol 16:3923–3933

    PubMed  CAS  Google Scholar 

  138. Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences [see comment]. Science 261:1411–1418

    PubMed  CAS  Google Scholar 

  139. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    PubMed  CAS  Google Scholar 

  140. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    PubMed  CAS  Google Scholar 

  141. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lin J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi H Y, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    PubMed  CAS  Google Scholar 

  142. Arndt KM, Pelletier JN, Müller KM, Alber T, Michnick SW, Plückthun A (2000) A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versus-library ensemble. J Mol Biol 295:627–639

    PubMed  CAS  Google Scholar 

  143. Arndt KM, Pelletier JN, Müller KM, Plückthun A, Alber T (2002) Comparison of in vivo selection and rational design of heterodimeric coiled coils. Structure 10:1235–1248

    PubMed  CAS  Google Scholar 

  144. Arndt KM, Müller KM, Plückthun A (2001) Helix-stabilized Fv (hsFv) antibody fragments: substituting the constant domains of a Fab fragment for a het-erodimeric coiled-coil domain. J Mol Biol 312:221–228

    PubMed  CAS  Google Scholar 

  145. Mason JM, Schmitz MA, Müller KM, Arndt KM (2006) Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design. Proc Natl Acad Sci USA 103:8989–8994

    PubMed  CAS  Google Scholar 

  146. Mason JM, Müller KM, Arndt KM (2007) Positive Aspects of Negative Design: Simultaneous Selection of Specificity and Interaction Stability. Biochemistry 46:4804–4814

    PubMed  CAS  Google Scholar 

  147. Mason JM, Hagemann UB, Arndt KM (2007) Improved Stability of the Jun-Fos Activator Protein-1 Coiled Coil Motif: A Stopped-flow Circluar Dichroism Kinetic Analysis. J Biol Chem 282:23015–23024

    PubMed  CAS  Google Scholar 

  148. Jouaux, EM, Schmidkunz K, Müller KM, Arndt KM (2008) Targeting the c-Myc coiled coil with interfering peptides to inhibit DNA binding. J Pept Sci (in press)

    Google Scholar 

  149. Mossner E, Koch H, Plückthun A (2001) Fast selection of antibodies without antigen purification: adaptation of the protein fragment complementation assay to select antigen-antibody pairs. J Mol Biol 308:115–122

    PubMed  CAS  Google Scholar 

  150. Remy I, Wilson IA, Michnick SW (1999) Erythropoietin receptor activation by a ligand-induced conformation change. Science 283:990–993

    PubMed  CAS  Google Scholar 

  151. Laser H, Bongards C, Schuller J, Heck S, Johnsson N, Lehming N (2000) A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci USA 97:13732–13737

    PubMed  CAS  Google Scholar 

  152. Stagljar I, Korostensky C, Johnsson N, te Heesen S (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95:5187–5192

    PubMed  CAS  Google Scholar 

  153. Ooi AT, Stains CI, Ghosh I, Segal DJ (2006) Sequence-enabled reassembly of beta-lactamase (SEER-LAC): a sensitive method for the detection of double-stranded DNA. Biochemistry 45:3620–3625

    PubMed  CAS  Google Scholar 

  154. Stains CI, Porter JR, Ooi AT, Segal DJ, Ghosh I (2005) DNA sequence-enabled reassembly of the green fluorescent protein. J Am Chem Soc 127:10782–10783

    PubMed  CAS  Google Scholar 

  155. Massoud TF, Paulmurugan R, Gambhir SS (2004) Molecular imaging of homodimeric protein–protein interactions in living subjects. Faseb J 18:1105–1107

    PubMed  CAS  Google Scholar 

  156. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    PubMed  CAS  Google Scholar 

  157. Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2004) Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427

    PubMed  CAS  Google Scholar 

  158. Walter M, Chaban C, Schutze K, Batistio O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    PubMed  CAS  Google Scholar 

  159. Christmann A, Wentzel A, Meyer C, Meyers G, Kolmar H (2001) Epitope mapping and affinity purification of monospecific antibodies by Escherichia coli cell surface display of gene-derived random peptide libraries. J Immunol Methods 257:163–173

    PubMed  CAS  Google Scholar 

  160. Wentzel A, Christmann A, Kratzner R, Kolman H (1999) Sequence requirements of the GPNG beta-turn of the Ecballium elaterium trypsin inhibitor II explored by combinatorial library screening. J Biol Chem 274:21037–21043

    PubMed  CAS  Google Scholar 

  161. Kjaergaard K, Schembri MA, Klemm P (2001) Novel Zn(2+)-chelating peptides selected from a fimbria-displayed random peptide library. Appl Environ Microbiol 67:5467–5473

    PubMed  CAS  Google Scholar 

  162. James P, Vorherr T, Carafoli E (1995) Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem Sci 20:38–42

    PubMed  CAS  Google Scholar 

  163. Weaver-Feldhaus JM, Miller KD, Feldhaus MJ, Siegel RW (2005) Directed evolution for the development of conformation-specific affinity reagents using yeast display. Protein Eng Des Sel 18:527–536

    PubMed  CAS  Google Scholar 

  164. Williams T (1996) The iridoviruses. Adv Virus Res 46:345–412

    PubMed  CAS  Google Scholar 

  165. Tamaru Y, Ohtsuka M, Kato K, Manabe S, Kuroda K, Sanada M, Ueda M (2006) Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine. Biotechnol Prog 22:949–953

    PubMed  CAS  Google Scholar 

  166. Cho BK, Kieke MC, Boder ET, Wittrup KD, Kranz DM (1998) A yeast surface display system for the discovery of ligands that trigger cell activation. J Immunol Methods 220:179–188

    PubMed  CAS  Google Scholar 

  167. Kondo A, Ueda M (2004) Yeast cell-surface display–applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    PubMed  CAS  Google Scholar 

  168. Raty JK, Airenne KJ, Marttila AT, Marjomaki V, Hytonen VF, Lehtolainen P, Laitinen OH, Mahonen AJ, Kulomaa MS, Yla-Herttuala S (2004) Enhanced gene delivery by avidin-displaying baculovirus. Mol Ther 9:282–291

    PubMed  CAS  Google Scholar 

  169. Riddle DS, Sanz L, Chong H, Thompson J, Vile RG (2005) Tumor cell surface display of immunoglobulin heavy chain Fc by gene transfer as a means to mimic antibody therapy. Hum Gene Ther 16:830–844

    PubMed  CAS  Google Scholar 

  170. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    PubMed  CAS  Google Scholar 

  171. Low NM, Holliger PH, Winter G (1996) Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 260:359–368

    PubMed  CAS  Google Scholar 

  172. de Bruin R, Spelt K, Mol J, Koes R, Quattrocchio F (1999) Selection of high-affinity phage antibodies from phage display libraries. Nat Biotechnol 17:397–399

    PubMed  Google Scholar 

  173. Chowdhury PS, Pastan I (1999) Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat Biotechnol 17:568–572

    PubMed  CAS  Google Scholar 

  174. Francisco JA, Campbell R, Iverson BL, Georgiou G (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci USA 90:10444–10448

    PubMed  CAS  Google Scholar 

  175. Francisco JA, Georgiou G (1994) The expression of recombinant proteins on the external surface of Escherichia coli. Biotechnological applications. Ann NY Acad Sci 745:372–382

    PubMed  CAS  Google Scholar 

  176. Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R, 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34

    PubMed  CAS  Google Scholar 

  177. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97:10701–10705

    PubMed  CAS  Google Scholar 

  178. Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170

    PubMed  CAS  Google Scholar 

  179. Hanes J, Plückthun A (1997)In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94:4937–4942

    PubMed  CAS  Google Scholar 

  180. Gold L (2001) mRNA display: diversity matters during in vitro selection. Proc Natl Acad Sci USA 98:4825–4826

    PubMed  CAS  Google Scholar 

  181. Pavlov AR, Pavlova N V, Kozyavkin SA, Slesarev AL (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol 22:253–260

    PubMed  CAS  Google Scholar 

  182. Ghadessy FJ, Ramsay N, Boudsocq F, Loakes D, Brown A, Iwai S, Vaisman A, Woodgate R, Holliger P (2004) Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nat Biotechnol 22:755–759

    PubMed  CAS  Google Scholar 

  183. Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phospho-triesterase by in vitro compartmentalization. Embo J 22:24–35

    PubMed  CAS  Google Scholar 

  184. Cohen HM, Tawfik DS, Griffiths AD (2004) Altering the sequence specificity of Haelll methyltransferase by directed evolution using in vitro compartmentalization. Protein Eng Des Sel 17:3–11

    PubMed  CAS  Google Scholar 

  185. Levy M, Griswold KE, Ellington AL (2005) Direct selection of transacting ligase ribozymes by in vitro compartmentalization. Rna 11:1555–1562

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Willemsen, T. et al. (2008). Protein Engineering. In: Walker, J.M., Rapley, R. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-375-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-375-6_35

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-370-1

  • Online ISBN: 978-1-60327-375-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics