Skip to main content

Computational Methods for the Analysis of Primate Mobile Elements

  • Protocol
  • First Online:
Book cover Genetic Variation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 628))

Abstract

Transposable elements (TE), defined as discrete pieces of DNA that can move from one site to another site in genomes, represent significant components of eukaryotic genomes, including primates. Comparative genome-wide analyses have revealed the considerable structural and functional impact of TE families on primate genomes. Insights into these questions have come in part from the development of computational methods that allow detailed and reliable identification, annotation, and evolutionary analyses of the many TE families that populate primate genomes. Here, we present an overview of these computational methods and describe efficient data mining strategies for providing a comprehensive picture of TE biology in newly available genome sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  2. Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87.

    Article  Google Scholar 

  3. Gibbs, R.A., Rogers, J., Katze, M.G., Bumgarner, R., Weinstock, G.M., Mardis, E.R., et al. (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234.

    Article  PubMed  CAS  Google Scholar 

  4. Hedges, D.J. and Deininger, P.L. (2007) Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616, 46–59.

    Article  PubMed  CAS  Google Scholar 

  5. Callinan, P.A., Wang, J., Herke, S.W., Garber, R.K., Liang, P. and Batzer, M.A. (2005) Alu Retrotransposition-mediated deletion. J Mol Biol 348, 791–800.

    Article  PubMed  CAS  Google Scholar 

  6. Han, K., Sen, S.K., Wang, J., Callinan, P.A., Lee, J., Cordaux, R., et al. (2005) Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res 33, 4040–4052.

    Article  PubMed  CAS  Google Scholar 

  7. Sen, S.K., Han, K., Wang, J., Lee, J., Wang, H., Callinan, P.A., et al. (2006) Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet 79, 41–53.

    Article  PubMed  CAS  Google Scholar 

  8. Han, K., Lee, J., Meyer, T.J., Wang, J., Sen, S.K., Srikanta, D., et al. (2007) Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet 3, 1939–1949.

    Article  PubMed  CAS  Google Scholar 

  9. Bailey, J.A., Liu, G. and Eichler, E.E. (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73, 823–834.

    Article  PubMed  CAS  Google Scholar 

  10. Jurka, J., Kohany, O., Pavlicek, A., Kapitonov, V.V. and Jurka, M.V. (2004) Duplication, coclustering, and selection of human Alu retrotransposons. Proc Natl Acad Sci U S A 101, 1268–1272.

    Article  PubMed  CAS  Google Scholar 

  11. Lobachev, K.S., Stenger, J.E., Kozyreva, O.G., Jurka, J., Gordenin, D.A. and Resnick, M.A. (2000) Inverted Alu repeats unstable in yeast are excluded from the human genome. Embo J 19, 3822–3830.

    Article  PubMed  CAS  Google Scholar 

  12. Stenger, J.E., Lobachev, K.S., Gordenin, D., Darden, T.A., Jurka, J. and Resnick, M.A. (2001) Biased distribution of inverted and direct Alus in the human genome: implications for insertion, exclusion, and genome stability. Genome Res 11, 12–27.

    Article  PubMed  CAS  Google Scholar 

  13. Pickeral, O.K., Makalowski, W., Boguski, M.S. and Boeke, J.D. (2000) Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res 10, 411–415.

    Article  PubMed  CAS  Google Scholar 

  14. Xing, J., Wang, H., Belancio, V.P., Cordaux, R., Deininger, P.L. and Batzer, M.A. (2006) Emergence of primate genes by retrotransposon-mediated sequence transduction. Proc Natl Acad Sci U S A 103, 17608–17613.

    Article  PubMed  CAS  Google Scholar 

  15. Morrish, T.A., Gilbert, N., Myers, J.S., Vincent, B.J., Stamato, T.D., Taccioli, G.E., et al. (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31, 159–165.

    Article  PubMed  CAS  Google Scholar 

  16. Sen, S.K., Huang, C.T., Han, K. and Batzer, M.A. (2007) Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome. Nucleic Acids Res 35, 3741–3751.

    Article  PubMed  CAS  Google Scholar 

  17. Mi, S., Lee, X., Li, X., Veldman, G.M., Finnerty, H., Racie, L., et al. (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789.

    Article  PubMed  CAS  Google Scholar 

  18. Cordaux, R., Udit, S., Batzer, M.A. and Feschotte, C. (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci U S A 103, 8101–8106.

    Article  PubMed  CAS  Google Scholar 

  19. Boissinot, S., Entezam, A. and Furano, A.V. (2001) Selection against deleterious LINE-1-containing loci in the human lineage. Mol Biol Evol 18, 926–935.

    Article  PubMed  CAS  Google Scholar 

  20. Cordaux, R., Lee, J., Dinoso, L. and Batzer, M.A. (2006) Recently integrated Alu retrotransposons are essentially neutral residents of the human genome. Gene 373, 138–144.

    Article  PubMed  CAS  Google Scholar 

  21. Schmid, C.W. (2003) Alu: A parasite’s parasite? Nat Genet 35, 15–16.

    Article  PubMed  CAS  Google Scholar 

  22. Brosius, J. and Gould, S.J. (1992) On “genomenclature”: A comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc Natl Acad Sci U S A 89, 10706–10710.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, W.M., Chu, W.M., Choudary, P.V. and Schmid, C.W. (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23, 1758–1765.

    Article  PubMed  CAS  Google Scholar 

  24. Schmid, C.W. (1998) Does SINE evolution preclude Alu function? Nucleic Acids Res 26, 4541–4550.

    Article  PubMed  CAS  Google Scholar 

  25. Brookfield, J.F. (2005) The ecology of the genome - mobile DNA elements and their hosts. Nat Rev Genet 6, 128–136.

    Article  PubMed  CAS  Google Scholar 

  26. Le Rouzic, A., Dupas, S. and Capy, P. (2007) Genome ecosystem and transposable elements species. Gene 390, 214–220.

    Article  PubMed  Google Scholar 

  27. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O. and Walichiewicz, J. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110, 462–467.

    Article  PubMed  CAS  Google Scholar 

  28. Kohany, O., Gentles, A.J., Hankus, L. and Jurka, J. (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bio­infor­matics 7, 474.

    Article  PubMed  Google Scholar 

  29. Edgar, R. C. and Myers, E. W. (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21 Suppl. 1, i152-i158.

    Article  PubMed  CAS  Google Scholar 

  30. Li, R., Ye, J., Li, S., Wang, J., Han, Y., Ye, C., et al. (2005) ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput Biol 1, e43.

    Article  PubMed  Google Scholar 

  31. Bao, Z. and Eddy, S.R. (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12, 1269–1276.

    Article  PubMed  CAS  Google Scholar 

  32. Price, A.L., Jones, N.C. and Pevzner, P.A. (2005) De novo identification of repeat families in large genomes. Bioinformatics 21 Suppl. 1, i351-i358.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, J., Song, L., Gonder, M.K., Azrak, S., Ray, D.A., Batzer, M.A., et al. (2006) Whole genome computational comparative genomics: A fruitful approach for ascertaining Alu insertion polymorphisms. Gene 365, 11–20.

    Article  PubMed  CAS  Google Scholar 

  34. Konkel, M.K., Wang, J., Liang, P. and Batzer, M.A. (2007) Identification and characterization of novel polymorphic LINE-1 insertions through comparison of two human genome sequence assemblies. Gene 390, 28–38.

    Article  PubMed  CAS  Google Scholar 

  35. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215, 403–410.

    PubMed  CAS  Google Scholar 

  36. Wang, J., Song, L., Grover, D., Azrak, S., Batzer, M.A. and Liang, P. (2006) dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat 27, 323–329.

    Article  PubMed  Google Scholar 

  37. Milosavljevic, A., Haussler, D. and Jurka, J. (1989) Informed parsimonious inference of prototypical genetic sequence. In: Proceedings of the Second Annual Workshop on Computational Learning Theory (Rivest, R., Haussler, D. and Warmuth, M.K., eds.), pp. 102–117. Morgan Kaufman, San Mateo.

    Google Scholar 

  38. Milosavljevic, A. (1990) Categorization of Macromolecular Sequences by Minimal Length Encoding, University of California at Santa Cruz.

    Google Scholar 

  39. Keich, U. and Pevzner, P.A. (2002) Finding motifs in the twilight zone. Bioinformatics 18, 1374–1381.

    Article  PubMed  CAS  Google Scholar 

  40. Price, A.L., Eskin, E. and Pevzner, P.A. (2004) Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res 14, 2245–2252.

    Article  PubMed  CAS  Google Scholar 

  41. Xing, J., Hedges, D.J., Han, K., Wang, H., Cordaux, R. and Batzer, M.A. (2004) Alu element mutation spectra: molecular clocks and the effect of DNA methylation. J Mol Biol 344, 675–682.

    Article  PubMed  CAS  Google Scholar 

  42. Jurka, J. (1994) Approaches to identification and analysis of interspersed repetitive DNA sequences. In: Automated DNA Sequencing and Analysis (Adams, M.D., Fields, C. and Venter, J.C., eds.), pp. 294–298. Academic Press, London.

    Google Scholar 

  43. Smit, A.F., Toth, G., Riggs, A.D. and Jurka, J. (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246, 401–417.

    Article  PubMed  CAS  Google Scholar 

  44. Pace, J. K., II and Feschotte, C. (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17, 422–432.

    Article  PubMed  CAS  Google Scholar 

  45. Kumar, S., Tamura, K. and Nei, M. (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.

    Article  PubMed  CAS  Google Scholar 

  46. Posada, D. and Crandall, K.A. (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Eco Evol 16, 37–45.

    Article  Google Scholar 

  47. Cordaux, R., Hedges, D.J. and Batzer, M.A. (2004) Retrotransposition of Alu elements: how many sources? Trends Genet 20, 464–467.

    Article  PubMed  CAS  Google Scholar 

  48. Bandelt, H.J., Forster, P. and Rohl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16, 37–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research is supported by National Science Foundation BCS-0218338 (MAB) and EPS-0346411 (MAB), National Institutes of Health RO1 GM59290 (MAB) and PO1 AG022064 (MAB), and the State of Louisiana Board of Regents Support Fund (MAB). RC is supported by a Young Investigator ATIP award from the Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Batzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cordaux, R., Sen, S.K., Konkel, M.K., Batzer, M.A. (2010). Computational Methods for the Analysis of Primate Mobile Elements. In: Barnes, M., Breen, G. (eds) Genetic Variation. Methods in Molecular Biology, vol 628. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-367-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-367-1_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-366-4

  • Online ISBN: 978-1-60327-367-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics