Skip to main content

ATP-Loaded Liposomes for Targeted Treatment in Models of Myocardial Ischemia

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 605))

Abstract

ATP cannot be effectively delivered to most tissues including the ischemic myocardium without protection from degradation by plasma endonucleotidases. However, it has been established that ATP can be delivered to various tissues by its encapsulation within liposomal preparations. We describe here, the materials needed and methods used to optimize the encapsulation of ATP in liposomes, enhance their effectiveness by increasing their circulation time and target injured myocardial cells with liposomal surface anti-myosin antibody. Additionally, we outline methods for ex vivo studies of these ATP liposomal preparations in an isolated ischemic rat heart model and for in vivo studies of rabbits with an induced myocardial infarction. The expectation is that these methods will provide a basis for continued studies of effective ways to deliver energy substrates to the ischemic myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190:255–266

    Article  CAS  PubMed  Google Scholar 

  2. Karmazyn M (1991) The 1990 Merck Frosst Award: ischemic and reperfusion injury in the heart. Cellular mechanisms and pharmacological interventions. Can J Physiol Pharmacol 69:719–730

    CAS  PubMed  Google Scholar 

  3. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Grossman W (1986) Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74:693–702

    CAS  PubMed  Google Scholar 

  4. Kingsley PB, Sako EY, Yang MQ, Zimmer SD, Ugurbil K, Foker JE, From AH (1991) Ischemic contracture begins when anaerobic glycolysis stops: a 31P-NMR study of isolated rat hearts. Am J Physiol 261:H469–H478

    CAS  PubMed  Google Scholar 

  5. Jennings RB, Schaper J, Hill ML, Steenbergen C Jr, Reimer KA (1985) Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56:262–278

    CAS  PubMed  Google Scholar 

  6. Khaw BA, Beller GA, Haber E, Smith TW (1976) Localization of cardiac myosin-specific antibody in myocardial infarction. J Clin Invest 58:439–446

    Article  CAS  PubMed  Google Scholar 

  7. Khaw BA, Scott J, Fallon JT, Cahill SL, Haber E, Homcy C (1982) Myocardial injury: quantitation by cell sorting initiated with antimyosin fluorescent spheres. Science 217:1050–1053

    Article  CAS  PubMed  Google Scholar 

  8. Kuzmin AI, Lakomkin VL, Kapelko VI, Vassort G (1998) Interstitial ATP level and degradation in control and postmyocardial infarcted rats. Am J Physiol 275:C766–C771

    CAS  PubMed  Google Scholar 

  9. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319

    CAS  PubMed  Google Scholar 

  10. Puisieux F, Fattal E, Lahiani M, Auger J, Jouannet P, Couvreur P, Delattre J (1994) Liposomes, an interesting tool to deliver a bioenergetic substrate (ATP). in vitro and in vivo studies. J Drug Target 2:443–448

    Article  CAS  PubMed  Google Scholar 

  11. Caride VJ, Zaret BL (1977) Liposome accumulation in regions of experimental myocardial infarction. Science 198:735–738

    Article  CAS  PubMed  Google Scholar 

  12. Khaw BA, Torchilin VP, Vural I, Narula J (1995) Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin–liposomes. Nat Med 1:1195–1198

    Article  CAS  PubMed  Google Scholar 

  13. Lukyanov AN, Hartner WC, Torchilin VP (2004) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94:187–193

    Article  CAS  PubMed  Google Scholar 

  14. Torchilin VP, Khaw BA, Smirnov VN, Haber E (1979) Preservation of antimyosin antibody activity after covalent coupling to liposomes. Biochem Biophys Res Commun 89:1114–1119

    Article  CAS  PubMed  Google Scholar 

  15. Torchilin VP, Narula J, Halpern E, Khaw BA (1996) Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta 1279:75–83

    Article  PubMed  Google Scholar 

  16. Trubetskaya OV, Trubetskoy VS, Domogatsky SP, Rudin AV, Popov NV, Danilov SM, Nikolayeva MN, Klibanov AL, Torchilin VP (1988) Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture. FEBS Lett 228:131–134

    Article  CAS  PubMed  Google Scholar 

  17. Palmer TN, Caride VJ, Caldecourt MA, Twickler J, Abdullah V (1984) The mechanism of liposome accumulation in infarction. Biochim Biophys Acta 797:363–368

    CAS  PubMed  Google Scholar 

  18. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100:135–144

    Article  CAS  PubMed  Google Scholar 

  19. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  20. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  21. Han YY, Huang L, Jackson EK, Dubey RK, Gillepsie DG, Carcillo JA (2001) Liposomal ATP or NAD + protects human endothelial cells from energy failure in a cell culture model of sepsis. Res Commun Mol Pathol Pharmacol 110:107–116

    CAS  PubMed  Google Scholar 

  22. Laham A, Claperon N, Durussel JJ, Fattal E, Delattre J, Puisieux F, Couvreur P, Rossignol P (1988) Intracarotidal administration of liposomally-entrapped ATP: improved efficiency against experimental brain ischemia. Pharmacol Res Commun 20:699–705

    Article  CAS  PubMed  Google Scholar 

  23. Laham A, Claperon N, Durussel JJ, Fattal E, Delattre J, Puisieux F, Couvreur P, Rossignol P (1988) Liposomally entrapped adenosine triphosphate: improved efficiency against experi­mental brain ischaemia in the rat. J Chromatogr 440:455–458

    Article  CAS  PubMed  Google Scholar 

  24. Konno H, Matin AF, Maruo Y, Nakamura S, Baba S (1996) Liposomal ATP protects the liver from injury during shock. Eur Surg Res 28:140–145

    Article  CAS  PubMed  Google Scholar 

  25. Neveux N, De Bandt JP, Chaumeil JC, Cynober L (2002) Hepatic preservation, liposomally entrapped adenosine triphosphate and nitric oxide production: a study of energy state and protein metabolism in the cold-stored rat liver. Scand J Gastroenterol 37:1057–1063

    Article  CAS  PubMed  Google Scholar 

  26. Neveux N, De Bandt JP, Fattal E, Hannoun L, Poupon R, Chaumeil JC, Delattre J, Cynober LA (2000) Cold preservation injury in rat liver: effect of liposomally-entrapped adenosine triphosphate. J Hepatol 33:68–75

    Article  CAS  PubMed  Google Scholar 

  27. Skiba-Lahiani M, Auger J, Terribile J, Fattal E, Delattre J, Puisieux F, Jouannet P (1995) Stimulation of movement and acrosome reaction of human spermatozoa by PC12 liposomes encapsulating ATP. Int J Androl 18:287–294

    CAS  PubMed  Google Scholar 

  28. Xu GX, Xie XH, Liu FY, Zang DL, Zheng DS, Huang DJ, Huang MX (1990) Adenosine triphosphate liposomes: encapsulation and distribution studies. Pharm Res 7:553–557

    Article  CAS  PubMed  Google Scholar 

  29. Hartner WC, Verma DD, Levchenko T, Bernstein EA, Torchilin V (2008, in press) ATP-loaded liposomes for treatment of myocardial ischemia.

    Google Scholar 

  30. Verma DD, Levchenko TS, Bernstein EA, Torchilin VP (2005) ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J Control Release 108:460–471

    Article  CAS  PubMed  Google Scholar 

  31. Verma DD, Hartner WC, Levchenko TS, Bernstein EA, Torchilin VP (2005) ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res 22:2115–2120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Levchenko, T.S., Hartner, W.C., Verma, D.D., Bernstein, E.A., Torchilin, V.P. (2010). ATP-Loaded Liposomes for Targeted Treatment in Models of Myocardial Ischemia. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology, vol 605. Humana Press. https://doi.org/10.1007/978-1-60327-360-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-360-2_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-359-6

  • Online ISBN: 978-1-60327-360-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics