Skip to main content

Protein Displacement by Helicases

  • Protocol
  • First Online:
Helicases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 587))

Abstract

Helicases are ubiquitous enzymes that are vital to all living organisms. They are motor proteins that move in a specific direction along the nucleic acid and unwind the nucleic acid (DNA and RNA). ATP hydrolysis provides energy for helicase translocation and unwinding. The unwinding process provides ssDNA intermediates necessary for replication, recombination, and repair. Mutations in specific DNA helicases can lead to disruption in DNA metabolism. For example, mutations in helicases genes resulted in diseases such as xeroderma pigmentosum, cockayne’s syndrome, Bloom’s syndrome, and Werner’s syndrome. During unwinding, helicases are most likely to encounter proteins while moving along the nucleic acid. Several different research groups have demonstrated that helicases shift or displace proteins from one nucleic acid-bound location to another. These protein–protein collisions could result in displacement of proteins from nucleic acid or dissociation of helicase from nucleic acid. This report describes several different methods developed to study protein displacement by DNA and RNA helicases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delagoutte E. and von Hippel P. H. (2002) Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: Structures and properties of isolated helicases. Q. Rev. Biophys. 35, 431–478.

    Article  PubMed  CAS  Google Scholar 

  2. Lohman T. M. and Bjornson K. P. (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169–214.

    Article  PubMed  CAS  Google Scholar 

  3. Soultanas P. and Wigley D. B. (2001) Unwinding the ‘Gordian knot’ of helicase action. Trends Biochem. Sci. 26, 47–54.

    Article  PubMed  CAS  Google Scholar 

  4. Matson S. W., Bean D. W., and George J. W. (1994) DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. BioEssays 16, 13–22.

    Article  PubMed  CAS  Google Scholar 

  5. Lahue E. E. and Matson S. W. (1988). Escherichia coli DNA helicase I catalyzes a uniderctional and highly processive unwinding reaction. J. Biol. Chem. 263, 3208–3215.

    PubMed  CAS  Google Scholar 

  6. Delagoutte E. and von Hippel P. H. (2002) Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I:structures and properties of isolated helicases. Q. Rev. Biophys. 35, 431–478.

    Article  PubMed  CAS  Google Scholar 

  7. Eggleston A. K., O’Neill T. E., Bradbury E. M., and Kowalczykowski S. C. (1995) Unwinding of nucleosomal DNA by a DNA helicase. J. Biol. Chem. 270, 2024–2031.

    Article  PubMed  CAS  Google Scholar 

  8. Morris P. D. and Raney K. D. (1999) DNA helicases displace streptavidin from biotin-labeled oligonucleotides. Biochemistry 38, 5164–5171.

    Article  PubMed  CAS  Google Scholar 

  9. Morris P. D., Byrd A. K., Tackett A. J., Cameron C. E., Tanega P., Ott R., et al. (2002) Hepatitis C virus NS3 and simian virus 40 T antigen helicases displace streptavidin from 5′-biotinylated oligonucleotides but not from 3′-biotinylated oligonucleotides: evidence for directional bias in translocation on single-stranded DNA. Biochemistry 41, 2372–2378.

    Article  PubMed  CAS  Google Scholar 

  10. Byrd A. K. and Raney K. D. (2004) Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat. Struct. Mol. Biol. 11, 531–538.

    Article  PubMed  CAS  Google Scholar 

  11. Byrd A. K. and Raney K. D. (2006) Displacement and unwinding of trp repressor by Dda helicase. Nucleic Acids Res. 34, 3020–3029.

    Article  PubMed  CAS  Google Scholar 

  12. Anand S. P., Zheng H., Bianco P. R., Leuba S. H., and Khan S. A. (2007) DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange. J. Bact. 189, 4502–4509.

    Article  PubMed  CAS  Google Scholar 

  13. Fairman M. E., Maroney P. A., Wang W., Bowers H. A., Gollnick P., Nilsen T. W., et al. (2004) Protein displacement by DExH/D “RNA helicases” with out duplex unwinding. Science 304, 730–734.

    Article  PubMed  CAS  Google Scholar 

  14. Flores M. J., Sanchez N., and Michel B. (2005) A fork-clearing role for UvrD. Mol. Microbiol. 57, 1664–1675.

    Article  PubMed  CAS  Google Scholar 

  15. Macris M. A. and Sung P. (2005) Multifaceted role of the Saccharomyces cerevisiae Srs2 helicase in homologous recombination regulation. Biochem. Soc. Trans. 33, 1447–1450.

    Article  PubMed  CAS  Google Scholar 

  16. Jankowsky E., Gross C. H., Shuman S., and Pyle A. M. (2001) Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125.

    Article  PubMed  CAS  Google Scholar 

  17. Fyodorov D. V. and Kadonaga J. T. (2001) The many faces of chromatin remodeling: switching beyond transcription. Cell 106, 523–525.

    Article  PubMed  CAS  Google Scholar 

  18. Lusser A. and Kadonaga J. T. (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25, 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  19. Sprouse O. R., Brenowitz M., and Auble D. T. (2006) Snf2/Swi2-related ATPase Mot1 drives displacement of TATA-binding protein by gripping DNA. EMBO J. 25, 1492–1504.

    Article  PubMed  CAS  Google Scholar 

  20. Park J., Marr M. T., and Roberts J. W. (2002) Escherichia coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109, 757–767.

    Article  PubMed  CAS  Google Scholar 

  21. Gohara D. W., Ha C. S., Kumar S., Gosh B., Arnold J. J., Wisniewki T. J., et al. (1999) Production of “authentic” poliovirus RNA-dependent RNA polymerase (3D(pol)) by ubiquitin-protease-mediated cleavage in Escherichia coli. Protein. Expr. Purif. 17,128–138.

    Article  PubMed  CAS  Google Scholar 

  22. Tackett A. J., Wei L., Cameron C. E., and Raney K. D. (2001) Unwinding of nucleic acids by HCV NS3 helicase is sensitive to the structure of the duplex. Nucleic Acids Res. 29, 565–572.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yeruva, L., Raney, K.D. (2009). Protein Displacement by Helicases. In: Abdelhaleem, M. (eds) Helicases. Methods in Molecular Biology, vol 587. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-355-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-355-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-354-1

  • Online ISBN: 978-1-60327-355-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics