Advertisement

What Statisticians Should Know About Microarray Gene Expression Technology

  • Stephen WelleEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 972)

Abstract

This chapter briefly reviews how laboratories generate microarray data. This information may give data analysts a better appreciation of the technical sources of variability in the data and the importance of minimizing such variability by normalization methods or exclusion of aberrant arrays.

Key words

DNA arrays cDNAs RNAs rRNAs mRNAs hybridization Target quantitation Basic data processing 

References

  1. 1.
    Lee ML, Kuo FC, Whitmore GA, Sklar J (2000) Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci USA 97(18):9834–9839PubMedCrossRefGoogle Scholar
  2. 2.
    Han ES, Wu Y, McCarter R, Nelson JF, Richardson A, Hilsenbeck SG (2004) Reproducibility, sources of variability, pooling, and sample size: important considerations for the design of high-density oligonucleotide array experiments. J Gerontol A Biol Sci Med Sci 59(4):306–315PubMedCrossRefGoogle Scholar
  3. 3.
    Dafforn A, Chen P, Deng G, Herrler M, Iglehart D, Koritala S et al (2004) Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. BioTechniques 37(5):854–857PubMedGoogle Scholar
  4. 4.
    Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W et al (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24(9):1140–1150PubMedCrossRefGoogle Scholar
  5. 5.
    Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501PubMedCrossRefGoogle Scholar
  6. 6.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193PubMedCrossRefGoogle Scholar
  7. 7.
    McClintick JN, Edenberg HJ (2006) Effects of filtering by present call on analysis of microarray experiments. BMC Bioinform 7:49CrossRefGoogle Scholar
  8. 8.
    Chudin E, Walker R, Kosaka A, Wu SX, Rabert D, Chang T et al (2001) Assessment of the relationship between signal intensities and transcript concentrations for Affymetrix GeneChip arrays. Genome Biol 3:research0005.1–research0005.10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Functional Genomics CenterUniversity of RochesterRochesterUSA

Personalised recommendations