Advertisement

Retinoids pp 149-162 | Cite as

HPLC / MSN Analysis of Retinoids

  • James E. Evans
  • Peter McCaffery
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 652)

Abstract

This protocol describes a highly sensitive and selective method to quantify retinoids using normal-phase HPLC with online APCI MSN. The retinoids are key regulators of gene expression, retinol being oxidized via a retinaldehyde intermediate to retinoic acid (RA) which activates specific nuclear receptors, the signalling of which is turned off by oxidative inactivation of the ligand to 4-oxo-RA and other metabolites. Many of these retinoids are present only transiently at low concentrations in tissues and during analysis are labile to heat, light, and oxygen. HPLC with online APCI MSN provides a rapid technique to quantify these retinoids simultaneously. Techniques to extract the retinoids and prevent their degradation are described, with an emphasis on transcriptionally active RA. RA controls patterning of gene expression in the embryo, organizing embryonic morphology in the central nervous system. Similarly, a patterned distribution of RA controls function of the adult CNS, a tissue particularly difficult to analyse for RA because of its high lipid content. To understand how these patterns are organized in the brain and change over time, it is essential to determine the concentration of RA in small areas of tissues, and techniques of exquisite sensitivity are indispensable.

Key words

Retinoic acid retinol retinaldehyde 4-oxo retinoic acid high-performance liquid chromatography mass spectrometry brain 

References

  1. 1.
    International Union of Nutritional Sciences, C. I., Nomenclature (1978). (1976) Generic descriptors and trivial names for vitamins and related compounds recommendations. Nutr. Abstr. Rev. Ser. A, 831–835.Google Scholar
  2. 2.
    Nomenclature of Retinoids: Recommendations 1981. (1983) IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Arch. Biochem. Biophys. 224, 728–731.Google Scholar
  3. 3.
    Chiu, H.J., Fischman, D.A., Hammerling, U. (2008) Vitamin A depletion causes oxidative stress, mitochondrial dysfunction, and PARP-1-dependent energy deprivation, FASEB. J. 22, 3878–3887.PubMedCrossRefGoogle Scholar
  4. 4.
    Sporn, M.B., Roberts, A.B., Goodman, D.S. (1994) The Retinoids: Biology, Chemistry, and Medicine, 2nd ed., Raven Press, New York.Google Scholar
  5. 5.
    Mey, J., McCaffery, P. (2004) Retinoic acid signaling in the nervous system of adult vertebrates, Neuroscientist 10, 409–421.PubMedCrossRefGoogle Scholar
  6. 6.
    Lane, M.A., Bailey, S.J. (2005) Role of retinoid signalling in the adult brain, Prog. Neurobiol. 75, 275–293.PubMedCrossRefGoogle Scholar
  7. 7.
    Tafti, M., Ghyselinck, N.B. (2007) Functional implication of the vitamin A signaling pathway in the brain. Arch. Neurol. 64, 1706–1711.PubMedCrossRefGoogle Scholar
  8. 8.
    Krishnamurthy, S., Bieri, J.G., Andrews, E.L. (1963) Metabolism and biological activity of vitamin A acid in the chick. J. Nutr. 79, 503–510.PubMedGoogle Scholar
  9. 9.
    McCaffery, P., Lee, M.-O., Wagner, M.A., Sladek, N.E., Dräger, U.C. (1992) Asymmetrical retinoic acid synthesis in the dorso-ventral axis of the retina. Development 115, 371–382.PubMedGoogle Scholar
  10. 10.
    McCaffery, P., Dräger, U.C. (1994) Hotspots of retinoic acid synthesis in the developing spinal cord. Proc. Natl. Acad. Sci. USA 91, 7194–7197.PubMedCrossRefGoogle Scholar
  11. 11.
    McCaffery, P., Dräger, U.C. (1994) High levels of a retinoic-acid generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl. Acad. Sci. USA 91, 7772–7776.PubMedCrossRefGoogle Scholar
  12. 12.
    Wyss, R., Bucheli, F. (1988) Quantitative analysis of retinoids in biological fluids by high-performance liquid chromatography using column switching. I. Determination of isotretinoin and tretinoin and their 4-oxo metabolites in plasma. J. Chromatogr. 424, 303–314.PubMedCrossRefGoogle Scholar
  13. 13.
    Furr, H.C., Barua, A.B., Olson, J.A. (1994) Analytical methods. In: Sporn, M.B., Roberts, A.B., Goodman, D.S. (eds.), The Retinoids: Biology, Chemistry, and Medicine, Raven Press, New York.Google Scholar
  14. 14.
    Morgan, B., Thompson, J.N., Pitt, G.A. (1969) The uptake and metabolism of retinol, retinoic acid and methyl retinoate by the early chick embryo, Br. J. Nutr. 23, 899–904.PubMedCrossRefGoogle Scholar
  15. 15.
    Huang, H.S., Goodman, D.S. (1965) Vitamin A and carotenoids. I. Intestinal absorption and metabolism of 14c-labelled vitamin A alcohol and beta-carotene in the rat. J. Biol. Chem. 240, 2839–2844.PubMedGoogle Scholar
  16. 16.
    Roberts, A.B., DeLuca, H.F. (1968) Oxidative decarboxylation of retinoic acid in microsomes of rat liver and kidney. J. Lipid Res. 9, 501–508.PubMedGoogle Scholar
  17. 17.
    Zachman, R.D., Dunagin, P.E., Jr., Olson, J.A. (1966) Formation and enterohepatic circulation of metabolites of retinol and retinoic acid in bile duct-cannulated rats. J. Lipid Res. 7, 3–9.PubMedGoogle Scholar
  18. 18.
    Zile, M.H., Emerick, R.J., DeLuca, H.F. (1967) Identification of 13-cis retinoic acid in tissue extracts and its biological activity in rats. Biochim. Biophys. Acta. 141, 639–641.PubMedCrossRefGoogle Scholar
  19. 19.
    Zile, M., DeLuca, H.F. (1968) Chromatography of vitamin A compounds on silicic acid columns. Anal. Biochem. 25, 307–316.PubMedCrossRefGoogle Scholar
  20. 20.
    Lippel, K., Olson, J.A. (1968) Origin of some derivatives of retinoic acid found in rat bile. J. Lipid Res. 9, 580–586.PubMedGoogle Scholar
  21. 21.
    Kleiner-Bossaler, A., Deluca, H.F. (1971) Formation of retinoic acid from retinol in the kidney. Arch. Biochem. Biophys. 142, 371–377.PubMedCrossRefGoogle Scholar
  22. 22.
    Ito, Y.L., Zile, M., Ahrens, H., DeLuca, H.F. (1974) Liquid-gel partition chromatography of vitamin A compounds; formation of retinoic acid from retinyl acetate in vivo. J. Lipid Res. 15, 517–524.PubMedGoogle Scholar
  23. 23.
    Bridges, C.D. (1975) Storage, distribution and utilization of vitamins A in the eyes of adult amphibians and their tadpoles. Vision Res. 15, 1311–1323.PubMedCrossRefGoogle Scholar
  24. 24.
    Frolik, C.A., Tavela, T.E., Sporn, M.B. (1978) Separation of the natural retinoids by high-pressure liquid chromatography. J. Lipid Res. 19, 32–37.PubMedGoogle Scholar
  25. 25.
    Bugge, C.J., Rodriguez, L.C., Vane, F.M. (1985) Determination of isotretinoin or etretinate and their major metabolites in human blood by reversed-phase high-performance liquid chromatography. J. Pharm. Biomed. Anal. 3, 269–277.PubMedCrossRefGoogle Scholar
  26. 26.
    McCaffery, P., Evans, J., Koul, O., Volpert, A., Reid, K., Ullman, M. (2002) Retinoid quantification by HPLC/MS(n). J. Lipid Res. 43, 1143–1149.PubMedCrossRefGoogle Scholar
  27. 27.
    Campins-Falco, P., Herraez-Hernandez, R., Sevillano-Cabeza, A. (1993) Column-switching techniques for high-performance liquid chromatography of drugs in biological samples. J. Chromatogr. 619, 177–190.PubMedCrossRefGoogle Scholar
  28. 28.
    Gundersen, T.E., Lundanes, E., Blomhoff, R. (1997) Quantitative high-performance liquid chromatographic determination of retinoids in human serum using on-line solid-phase extraction and column switching. Determination of 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid, 4-oxo-all-trans-retinoicacid and 4-oxo- 13-cis-retinoic acid. J. Chromatogr. B Biomed. Sci. Appl. 691, 43–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Schmidt, C.K., Brouwer, A., Nau, H. (2003) Chromatographic analysis of endogenous retinoids in tissues and serum. Anal. Biochem. 315, 36–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Ranalder, U.B., Lausecker, B.B., Huselton, C. (1993) Micro liquid chromatography-mass spectrometry with direct liquid introduction used for separation and quantitation of all-trans- and 13- cis-retinoic acids and their 4-oxo metabolites in human plasma. J. Chromatogr. 617, 129–135.PubMedCrossRefGoogle Scholar
  31. 31.
    Van Breemen, R.B., Huang, C.R. (1996) High-performance liquid chromatography-electrospray mass spectrometry of retinoids. FASEB. J. 10, 1098–1101.PubMedGoogle Scholar
  32. 32.
    van Breemen, R.B., Nikolic, D., Xu, X., Xiong, Y., van Lieshout, M., West, C.E., Schilling, A.B. (1998) Development of a method for quantitation of retinol and retinyl palmitate in human serum using high-performance liquid chromatography- atmospheric pressure chemical ionization-mass spectrometry. J. Chromatogr. A. 794, 245–251.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang, Y., Chang, W.Y., Prins, G.S., van Breemen, R.B. (2001) Simultaneous determination of all-trans, 9-cis, 13-cis retinoic acid and retinol in rat prostate using liquid chromatography-mass spectrometry. J. Mass Spectrom. 36, 882–888.PubMedCrossRefGoogle Scholar
  34. 34.
    Kane, M.A., Chen, N., Sparks, S., Napoli, J.L. (2005) Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem. J. 388, 363–369.PubMedCrossRefGoogle Scholar
  35. 35.
    Kurlandsky, S.B., Gamble, M.V., Ramakrishnan, R., Blaner, W.S. (1995) Plasma delivery of retinoic acid to tissues in the rat. J. Biol. Chem. 270, 17850–17857.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • James E. Evans
    • 1
  • Peter McCaffery
    • 2
  1. 1.Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Institute of Medical SciencesSchool of Medical SciencesForesterhillScotland

Personalised recommendations