Retinoids pp 95-114 | Cite as

Physiological Studies of the Interaction Between Opsin and Chromophore in Rod and Cone Visual Pigments

  • Vladimir J. Kefalov
  • M. Carter Cornwall
  • Gordon L. Fain
Part of the Methods in Molecular Biology book series (MIMB, volume 652)


The visual pigment in vertebrate photoreceptors is a G protein-coupled receptor that consists of a protein, opsin, covalently attached to a chromophore, 11-cis-retinal. Activation of the visual pigment by light triggers a transduction cascade that produces experimentally measurable electrical responses in photoreceptors. The interactions between opsin and chromophore can be investigated with electrophysiologial recordings in intact amphibian and mouse rod and cone photoreceptor cells. Here we describe methods for substituting the native chromophore with various chromophore analogs to investigate how specific parts of the chromophore affect the signaling properties of the visual pigment and the function of photoreceptors. We also describe methods for genetically substituting the native rod opsin gene with cone opsins or with mutant rod opsins to investigate and compare their signaling properties. These methods are useful not only for understanding the relation between the properties of visual pigments and the function of photoreceptors but also for understanding the mechanisms by which mutations in rod opsin produce night blindness and other visual disorders.

Key words

Opsin, chromophore visual pigment photoreceptor phototransducion dark adaptation transgenic pigment rhodopsin mutation 


  1. 1.
    Ebrey, T., Koutalos, Y. (2001) Vertebrate photoreceptors. Prog. Retin. Eye Res. 20, 49–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Saari, J.C. (2000) Biochemistry of visual pigment regeneration: The Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 41, 337–348.PubMedGoogle Scholar
  3. 3.
    Cornwall, M.C., Fain, G.L. (1994) Bleached pigment activates transduction in isolated rods of the salamander retina. J. Physiol. 480(Pt 2), 261–279.PubMedGoogle Scholar
  4. 4.
    Cornwall, M.C., Matthews, H.R., Crouch, R.K., Fain, G.L. (1995) Bleached pigment activates transduction in salamander cones. J. Gen. Physiol. 106, 543–557.PubMedCrossRefGoogle Scholar
  5. 5.
    Yokoyama, S. (2000) Molecular evolution of vertebrate visual pigments. Prog. Retin. Eye Res. 19, 385–419.PubMedCrossRefGoogle Scholar
  6. 6.
    Cornwall, M.C., Jones, G.J., Kefalov, V.J., Fain, G.L., Matthews, H.R. (2000) Electrophysiological methods for measurement of activation of phototransduction by bleached visual pigment in salamander photoreceptors. Methods Enzymol. 316, 224–252.PubMedCrossRefGoogle Scholar
  7. 7.
    Crouch, R.K., Kefalov, V., Gartner, W., Cornwall, M.C. (2002) Use of retinal analogues for the study of visual pigment function. Methods Enzymol. 343, 29–48.PubMedCrossRefGoogle Scholar
  8. 8.
    Xiong, W.H., Yau, K.W. (2002) Rod sensitivity during Xenopus development. J. Gen. Physiol. 120, 817–827.PubMedCrossRefGoogle Scholar
  9. 9.
    Lem, J., Makino, C.L. (1996) Phototransduction in transgenic mice. Curr. Opin. Neurobiol. 6, 453–458.PubMedCrossRefGoogle Scholar
  10. 10.
    Fan, J., Woodruff, M.L., Cilluffo, M.C., Crouch, R.K., Fain, G.L. (2005) Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice. J. Physiol. 568, 83–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Luo, D.G., Yau, K.W. (2005) Rod sensitivity of neonatal mouse and rat. J. Gen. Physiol. 126, 263–269.PubMedCrossRefGoogle Scholar
  12. 12.
    Dizhoor, A.M., Woodruff, M.L., Olshevskaya, E.V., Cilluffo, M.C., Cornwall, M.C., Sieving, P.A., Fain, G.L. (2008) Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin. J. Neurosci. 28, 11662–11672.PubMedCrossRefGoogle Scholar
  13. 13.
    Nikonov, S.S., Kholodenko, R., Lem, J., Pugh, E.N., Jr. (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J. Gen. Physiol. 127, 359–374.PubMedCrossRefGoogle Scholar
  14. 14.
    Heikkinen, H., Nymark, S., Koskelainen, A. (2008) Mouse cone photoresponses obtained with electroretinogram from the isolated retina. Vision Res. 48, 264–272.PubMedCrossRefGoogle Scholar
  15. 15.
    Matsumoto, H., Yoshizawa, T. (1975) Existence of a beta-ionone ring-binding site in the rhodopsin molecule. Nature 258, 523–526.PubMedCrossRefGoogle Scholar
  16. 16.
    Bownds, D. (1967) Site of attachment of retinal in rhodopsin. Nature 216, 1178–1181.PubMedCrossRefGoogle Scholar
  17. 17.
    Lyubarsky, A.L., Pugh, E.N., Jr. (2007) Over 98% of 11-cis retinal in the dark-adapted mouse eye is bound to rod and cone opsins. Invest. Ophthalmol. Vis. Sci. 48, 3246.CrossRefGoogle Scholar
  18. 18.
    Kefalov, V.J., Estevez, M.E., Kono, M., Goletz, P.W., Crouch, R.K., Cornwall, M.C., Yau, K.W. (2005) Breaking the covalent bond – a pigment property that contributes to desensitization in cones. Neuron 46, 879–890.PubMedCrossRefGoogle Scholar
  19. 19.
    Crouch, R.K. (1986) Studies of rhodopsin and bacteriorhodopsin using modified retinals. Photochem. Photobiol. 44, 803–807.PubMedCrossRefGoogle Scholar
  20. 20.
    Kefalov, V.J., Carter Cornwall, M., Crouch, R.K. (1999) Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. J. Gen. Physiol. 113, 491–503.PubMedCrossRefGoogle Scholar
  21. 21.
    Corson, D.W., Kefalov, V.J., Cornwall, M.C., Crouch, R.K. (2000) Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors. J. Gen. Physiol. 116, 283–297.PubMedCrossRefGoogle Scholar
  22. 22.
    Isayama, T., Chen, Y., Kono, M., Degrip, W.J., Ma, J.X., Crouch, R.K., Makino, C.L. (2006) Differences in the pharmacological activation of visual opsins. Vis. Neurosci. 23, 899–908.PubMedCrossRefGoogle Scholar
  23. 23.
    Jin, J., Crouch, R.K., Corson, D.W., Katz, B.M., MacNichol, E.F., Cornwall, M.C. (1993) Noncovalent occupancy of the retinal-binding pocket of opsin diminishes bleaching adaptation of retinal cones. Neuron 11, 513–522.PubMedCrossRefGoogle Scholar
  24. 24.
    Kefalov, V.J., Crouch, R.K., Cornwall, M.C. (2001) Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29, 749–755.PubMedCrossRefGoogle Scholar
  25. 25.
    Das, J., Crouch, R.K., Ma, J.X., Oprian, D.D., Kono, M. (2004) Role of the 9-methyl group of retinal in cone visual pigments. Biochemistry 43, 5532–5538.PubMedCrossRefGoogle Scholar
  26. 26.
    Ganter, U.M., Schmid, E.D., Perez-Sala, D., Rando, R.R., Siebert, F. (1989) Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry 28, 5954–5962.PubMedCrossRefGoogle Scholar
  27. 27.
    Corson, D.W., Cornwall, M.C., MacNichol, E.F., Tsang, S., Derguini, F., Crouch, R.K., Nakanishi, K. (1994) Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethylretinal. Proc. Natl. Acad. Sci. USA 91, 6958–6962.PubMedCrossRefGoogle Scholar
  28. 28.
    Estevez, M.E., Ala-Laurila, P., Crouch, R.K., Cornwall, M.C. (2006) Turning cones off: The role of the 9-methyl group of retinal in red cones. J. Gen. Physiol. 128, 671–685.PubMedCrossRefGoogle Scholar
  29. 29.
    Harosi, F.I. (1975) Absorption spectra and linear dichroism of some amphibian photoreceptors. J. Gen. Physiol. 66, 357–382.PubMedCrossRefGoogle Scholar
  30. 30.
    Makino, C.L., Dodd, R.L. (1996) Multiple visual pigments in a photoreceptor of the salamander retina. J. Gen. Physiol. 108, 27–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Ala-Laurila, P., Donner, K., Crouch, R.K., Cornwall, M.C. (2007) Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods. J. Physiol. 585, 57–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Fu, Y., Kefalov, V., Luo, D.G., Xue, T., Yau, K.W. (2008) Quantal noise from human red cone pigment. Nat. Neurosci. 11, 565–571.PubMedCrossRefGoogle Scholar
  33. 33.
    Crescitelli, F. (1984) The gecko visual pigment: The dark exchange of chromophore. Vision Res. 24, 1551–1553.PubMedCrossRefGoogle Scholar
  34. 34.
    Matsumoto, H., Tokunaga, F., Yoshizawa, T. (1975) Accessibility of the iodopsin chromophore. Biochim. Biophys. Acta 404, 300–308.PubMedCrossRefGoogle Scholar
  35. 35.
    Kefalov, V., Fu, Y., Marsh-Armstrong, N., Yau, K.W. (2003) Role of visual pigment properties in rod and cone phototransduction. Nature 425, 526–531.PubMedCrossRefGoogle Scholar
  36. 36.
    Rieke, F., Baylor, D.A. (2000) Origin and functional impact of dark noise in retinal cones. Neuron 26, 181–186.PubMedCrossRefGoogle Scholar
  37. 37.
    Redmond, T.M., Yu, S., Lee, E., Bok, D., Hamasaki, D., Chen, N., Goletz, P., Ma, J.X., Crouch, R.K., Pfeifer, K. (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20, 344–351.PubMedCrossRefGoogle Scholar
  38. 38.
    Jin, M., Li, S., Moghrabi, W.N., Sun, H., Travis, G.H. (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122, 449–459.PubMedCrossRefGoogle Scholar
  39. 39.
    Woodruff, M.L., Wang, Z., Chung, H.Y., Redmond, T.M., Fain, G.L., Lem, J. (2003) Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat. Genet. 35, 158–164.PubMedCrossRefGoogle Scholar
  40. 40.
    Fain, G.L., Dowling, J.E. (1973) Intracellular recordings from single rods and cones in the mudpuppy retina. Science 180, 1178–1181.PubMedCrossRefGoogle Scholar
  41. 41.
    Schnapf, J.L., Baylor, D.A. (1987) How photoreceptor cells respond to light. Sci. Am. 256, 40–47.PubMedCrossRefGoogle Scholar
  42. 42.
    Imai, H., Imamoto, Y., Yoshizawa, T., Shichida, Y. (1995) Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. Biochemistry 34, 10525–10531.PubMedCrossRefGoogle Scholar
  43. 43.
    Okada, T., Matsuda, T., Kandori, H., Fukada, Y., Yoshizawa, T., Shichida, Y. (1994) Circular dichroism of metaiodopsin II and its binding to transducin: A comparative study between meta II intermediates of iodopsin and rhodopsin. Biochemistry 33, 4940–4946.PubMedCrossRefGoogle Scholar
  44. 44.
    Starace, D.M., Knox, B.E. (1997) Activation of transducin by a Xenopus short wavelength visual pigment. J. Biol. Chem. 272, 1095–1100.PubMedCrossRefGoogle Scholar
  45. 45.
    Imai, H., Kefalov, V., Sakurai, K., Chisaka, O., Ueda, Y., Onishi, A., Morizumi, T., Fu, Y., Ichikawa, K., Nakatani, K., Honda, Y., Chen, J., Yau, K. W., Shichida, Y. (2007) Molecular properties of rhodopsin and rod function. J. Biol. Chem. 282, 6677–6684.PubMedCrossRefGoogle Scholar
  46. 46.
    Sakurai, K., Onishi, A., Imai, H., Chisaka, O., Ueda, Y., Usukura, J., Nakatani, K., Shichida, Y. (2007) Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. J. Gen. Physiol. 130, 21–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Shi, G., Yau, K.W., Chen, J., Kefalov, V.J. (2007) Signaling properties of a short-wave cone visual pigment and its role in phototransduction. J. Neurosci. 27, 10084–10093.PubMedCrossRefGoogle Scholar
  48. 48.
    Sampath, A.P., Baylor, D.A. (2002) Molecular mechanism of spontaneous pigment activation in retinal cones. Biophys. J. 83, 184–193.PubMedCrossRefGoogle Scholar
  49. 49.
    Makino, C.L., Wen, X.H., Lem, J. (2003) Piecing together the timetable for visual transduction with transgenic animals. Curr. Opin. Neurobiol. 13, 404–412.PubMedCrossRefGoogle Scholar
  50. 50.
    Xu, J., Dodd, R.L., Makino, C.L., Simon, M.I., Baylor, D.A., Chen, J. (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389, 505–509.PubMedCrossRefGoogle Scholar
  51. 51.
    Sieving, P.A., Richards, J.E., Naarendorp, F., Bingham, E.L., Scott, K., Alpern, M. (1995) Dark-light: Model for nightblindness from the human rhodopsin Gly-90–>Asp mutation. Proc. Natl. Acad. Sci. USA 92, 880–884.PubMedCrossRefGoogle Scholar
  52. 52.
    Sieving, P.A., Fowler, M.L., Bush, R.A., Machida, S., Calvert, P.D., Green, D.G., Makino, C.L., McHenry, C.L. (2001) Constitutive “light” adaptation in rods from G90D rhodopsin: A mechanism for human congenital nightblindness without rod cell loss. J. Neurosci. 21, 5449–5460.PubMedGoogle Scholar
  53. 53.
    Rao, V.R., Cohen, G.B., Oprian, D.D. (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367, 639–642.PubMedCrossRefGoogle Scholar
  54. 54.
    Rao, V.R., Oprian, D.D. (1996) Activating mutations of rhodopsin and other G protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 25, 287–314.PubMedCrossRefGoogle Scholar
  55. 55.
    Jin, S., Cornwall, M.C., Oprian, D.D. (2003) Opsin activation as a cause of congenital night blindness. Nat. Neurosci. 6, 731–735.PubMedCrossRefGoogle Scholar
  56. 56.
    Yau, K.W., Lamb, T.D., Baylor, D.A. (1977) Light-induced fluctuations in membrane current of single toad rod outer segments. Nature 269, 78–80.PubMedCrossRefGoogle Scholar
  57. 57.
    Cornwall, M.C., Fein, A., MacNichol, E.F., Jr. (1990) Cellular mechanisms that underlie bleaching and background adaptation. J. Gen. Physiol. 96, 345–372.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones, G.J. (1995) Light adaptation and the rising phase of the flash photocurrent of salamander retinal rods. J. Physiol. 487(Pt 2), 441–451.PubMedGoogle Scholar
  59. 59.
    Jones, G.J., Fein, A., MacNichol, E.F., Jr., Cornwall, M.C. (1993) Visual pigment bleaching in isolated salamander retinal cones. Microspectrophotometry and light adaptation. J. Gen. Physiol. 102, 483–502.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vladimir J. Kefalov
    • 1
  • M. Carter Cornwall
    • 2
  • Gordon L. Fain
    • 3
  1. 1.Department of Ophthalmology and Visual Sciences and Department of Anatomy and NeurobiologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Physiology and BiophysicsBoston University School of MedicineBostonUSA
  3. 3.Department of Physiological Science and Jules Stein Eye InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations