Retinoids pp 277-294 | Cite as

Detection of Retinoic Acid Catabolism with Reporter Systems and by In Situ Hybridization for CYP26 Enzymes

  • Yasuo Sakai
  • Ursula C. Dräger
Part of the Methods in Molecular Biology book series (MIMB, volume 652)


Retinoic acid (RA), an active form of vitamin A, is essential for life in vertebrates, owing to its capacity of influencing expression of a sizable fraction of all genes and proteins. It functions via two modes: (1) as controlling ligand for specific transcription factors in the nucleus it stimulates or inhibits gene expression from RA response elements in gene promoters; (2) in non-genomic pathways it activates kinase-signaling cascades that converge with additional influences to regulate gene expression and mRNA translation. RA performs a critical role in morphogenesis of the developing embryo, which is reflected in spatio-temporally changing expression patterns of RA-synthesizing and RA-degrading enzymes and in its biophysical characteristics as a small diffusible lipid. Because its histological localization cannot be directly visualized for technical reasons, its sites of action in vivo are inferred from the locations of the metabolic enzymes and through use of two kinds of RA reporter systems. Here we explain techniques for use of RA reporter cells and RA reporter mice, and we describe in situ hybridization methods for the three major RA-degrading enzymes: CYP26A1, CYP26B1, and CYP26C1. Comparisons of the different indicators for sites of RA signaling demonstrate that local RA peaks and troughs are important for inferring some but not all locations of RA actions. When integrated within cells of living mice, expression of the RA reporter construct is rarely a simple measure of local RA levels, especially in the developing brain, but it appears to provide cues to an RA involvement in site-specific regulatory networks in combination with other spatial determinants.

Key words

P450-linked oxidases RALDHs RARβ CREB non-canonical RA actions Rossant RARE-lacZ mice morphogenetic gradients pattern formation 


  1. 1.
    Ross, S.A., McCaffery, P., Dräger, U.C., De Luca, L.M. (2000) Retinoids in embryonal development. Physiol. Rev. 80, 1021–1054.PubMedGoogle Scholar
  2. 2.
    Niederreither, K., Dollé, P. (2008) Retinoic acid in development: Towards an integrated view. Nat. Rev. Genet. 9, 541–553.PubMedCrossRefGoogle Scholar
  3. 3.
    Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K., Gingeras, T.R. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509.PubMedCrossRefGoogle Scholar
  4. 4.
    Tickle, C., Alberts, B., Wolpert, L., Lee, J. (1982) Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296, 564–566.PubMedCrossRefGoogle Scholar
  5. 5.
    White, R.J., Schilling, T.F. (2008) How degrading: Cyp26s in hindbrain development. Dev. Dyn. 237, 2775–2790.PubMedCrossRefGoogle Scholar
  6. 6.
    White, J.A., Guo, Y.D., Baetz, K., Beckett-Jones, B., Bonasoro, J., Hsu, K.E., Dilworth, F.J., Jones, G., Petkovich, M. (1996) Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J. Biol. Chem. 271, 29922–29927.PubMedCrossRefGoogle Scholar
  7. 7.
    Fujii, H., Sato, T., Kaneko, S., Gotoh, O., Fujii-Kuriyama, Y., Osawa, K., Kato, S., Hamada, H. (1997) Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryo. EMBO J. 16, 4163–4173.PubMedCrossRefGoogle Scholar
  8. 8.
    Ray, W.J., Bain, G., Yao, M., Gottlieb, D.I. (1997) CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J. Biol. Chem. 272, 18702–18708.PubMedCrossRefGoogle Scholar
  9. 9.
    MacLean, G., Abu-Abed, S., Dolle, P., Tahayato, A., Chambon, P., Petkovich, M. (2001) Cloning of a novel retinoic-acid metabolizing cytochrome P450, Cyp26B1, and comparative expression analysis with Cyp26A1 during early murine development. Mech. Dev. 107, 195–201.PubMedCrossRefGoogle Scholar
  10. 10.
    Tahayato, A., Dolle, P., Petkovich, M. (2003) Cyp26C1 encodes a novel retinoic acid-metabolizing enzyme expressed in the hindbrain, inner ear, first branchial arch and tooth buds during murine development. Gene Express. Patterns 3, 449–454.CrossRefGoogle Scholar
  11. 11.
    Sakai, Y., Meno, C., Fujii, H., Nishino, J., Shiratori, H., Saijoh, Y., Rossant, J., Hamada, H. (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15, 213–225.PubMedCrossRefGoogle Scholar
  12. 12.
    Abu-Abed, S., Dolle, P., Metzger, D., Beckett, B., Chambon, P., Petkovich, M. (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev. 15, 226–240.PubMedCrossRefGoogle Scholar
  13. 13.
    Yashiro, K., Zhao, X., Uehara, M., Yamashita, K., Nishijima, M., Nishino, J., Saijoh, Y., Sakai, Y., Hamada, H. (2004) Regulation of retinoic acid distribution is required for proximo-distal patterning and outgrowth of the developing mouse limb. Dev. Cell 6, 411–422.PubMedCrossRefGoogle Scholar
  14. 14.
    Uehara, M., Yashiro, K., Mamiya, S., Nishino, J., Chambon, P., Dolle, P., Sakai, Y. (2007) CYP26A1 and CYP26C1 cooperatively regulate anterior-posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse. Dev. Biol. 302, 399–411.PubMedCrossRefGoogle Scholar
  15. 15.
    Lutz, J.D., Dixit, V., Yeung, C.K., Dickmann, L.J., Zelter, A., Thatcher, J.E., Nelson, W.L., Isoherranen, N. (2009) Expression and functional characterization of cytochrome P450 26A1, a retinoic acid hydroxylase. Biochem. Pharmacol. 15, 258–268.CrossRefGoogle Scholar
  16. 16.
    Niederreither, K., Abu-Abed, S., Schuhbaur, B., Petkovich, M., Chambon, P., Dolle, P. (2002) Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat. Genet. 31, 84–88.PubMedGoogle Scholar
  17. 17.
    McCaffery, P., Lee, M.-O., Wagner, M.A., Sladek, N.E., Dräger, U.C. (1992) Asymmetrical retinoic acid synthesis in the dorso-ventral axis of the retina. Development 115, 371–382.PubMedGoogle Scholar
  18. 18.
    Rossant, J., Zirngibl, R., Cado, D., Shago, M., Giguère, V. (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5, 1333–1344.PubMedCrossRefGoogle Scholar
  19. 19.
    Wagner, M., Han, B., Jessell, T.M. (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116, 55–66.PubMedGoogle Scholar
  20. 20.
    Yamamoto, M., Dräger, U.C., McCaffery, P. (1998) A novel assay for retinoic acid catabolic enzymes shows high expression in the developing hindbrain. Dev. Brain Res. 107, 103–111.CrossRefGoogle Scholar
  21. 21.
    McCaffery, P., Wagner, E., O'Neil, J., Petkovich, M., Dräger, U.C. (1999) Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression. Mech. Dev. 82, 119–30. Corrections 85, 203–214.PubMedCrossRefGoogle Scholar
  22. 22.
    McCaffery, P., Dräger, U.C. (1997) A sensitive bioassay for enzymes that synthesize retinoic acid. Brain Res. Protocols 1, 232–236.CrossRefGoogle Scholar
  23. 23.
    McCaffery, P., Dräger, U.C. (1995) Retinoic acid synthesizing enzymes in the embryonic and adult vertebrate. Adv. Exp. Med. Biol. 372, 173–183.PubMedGoogle Scholar
  24. 24.
    Henrique, D., Adam, J., Myat, A., Chitnis, A., Lewis, J., Ish-Horowicz, D. (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790.PubMedCrossRefGoogle Scholar
  25. 25.
    Sakai, Y., Luo, T., McCaffery, P., Hamada, H., Dräger, U.C. (2004) CYP26A1 and CYP26C1 cooperate in degrading retinoic acid within the equatorial retina during later eye development. Dev. Biol. 276, 143–157.PubMedCrossRefGoogle Scholar
  26. 26.
    Luo, T., Sakai, Y., Wagner, E., Dräger, U.C. (2006) Retinoids, eye development and maturation of visual function. J. Neurobiol. 66, 677–686.PubMedCrossRefGoogle Scholar
  27. 27.
    Luo, T., Wagner, E., Grün, F., Dräger, U.C. (2004) Retinoic acid signaling in the brain marks formation of optic projections, maturation of the dorsal telencephalon, and function of limbic sites. J. Comp. Neurol. 470, 297–316.PubMedCrossRefGoogle Scholar
  28. 28.
    Kurlandsky, S.B., Gamble, M.V., Ramakrishnan, R., Blaner, W.S. (1995) Plasma delivery of retinoic acid to tissues in the rat. J. Biol. Chem. 270, 17850–17857.PubMedCrossRefGoogle Scholar
  29. 29.
    Dräger, U.C. (2006) Retinoic acid signaling in the functioning brain. Science STKE 324, pe10.Google Scholar
  30. 30.
    Lane, M.A., Bailey, S.J. (2005) Role of retinoid signalling in the adult brain. Prog. Neurobiol. 75, 275–293.PubMedCrossRefGoogle Scholar
  31. 31.
    Luo, T., Wagner, E., Crandall, J.E., Dräger, U.C. (2004) A retinoic-acid critical period in the early postnatal mouse brain. Biol. Psychiat. 56, 971–980.PubMedCrossRefGoogle Scholar
  32. 32.
    Liao, W.L., Wang, H.F., Tsai, H.C., Chambon, P., Wagner, M., Kakizuka, A., Liu, F.C. (2005) Retinoid signaling competence and RARbeta-mediated gene regulation in the developing mammalian telencephalon. Dev. Dyn. 232, 887–900.PubMedCrossRefGoogle Scholar
  33. 33.
    Molotkova, N., Molotkov, A., Duester, G. (2007) Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone. Dev. Biol. 303, 601–610.PubMedCrossRefGoogle Scholar
  34. 34.
    Aggarwal, S., Kim, S.W., Cheon, K., Tabassam, F.H., Yoon, J.H., Koo, J.S. (2006) Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol. Biol. Cell 17, 566–575.PubMedCrossRefGoogle Scholar
  35. 35.
    Alique, M., Lucio-Cazana, F.J., Moreno, V., Xu, Q., Konta, T., Nakayama, K., Furusu, A., Sepulveda, J.C., Kitamura, M. (2007) Upregulation of cyclooxygenases by retinoic acid in rat mesangial cells. Pharmacology 79, 57–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Canon, E., Cosgaya, J.M., Scsucova, S., Aranda, A. (2004) Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Mol. Biol. Cell. 15, 5583–5592.PubMedCrossRefGoogle Scholar
  37. 37.
    Dey, N., De, P.K., Wang, M., Zhang, H., Dobrota, E.A., Robertson, K.A., Durden, D.L. (2007) CSK controls retinoic acid receptor (RAR) signaling: A RAR-c-SRC signaling axis is required for neuritogenic differentiation. Mol. Cell. Biol. 27, 4179–4197.PubMedCrossRefGoogle Scholar
  38. 38.
    Fernandes, N.D., Sun, Y., Price, B.D. (2007) Activation of ATM's kinase activity by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells. J. Biol. Chem. 282, 16577–16584.PubMedCrossRefGoogle Scholar
  39. 39.
    Hughes, P.J., Zhao, Y., Chandraratna, R.A., Brown, G. (2006) Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARalpha and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways. J. Cell. Biochem. 97, 327–350.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim, S.W., Hong, J.S., Ryu, S.H., Chung, W.C., Yoon, J.H., Koo, J.S. (2007) Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signaling pathway. Mol. Cell Biol. 27, 6933–6947.PubMedCrossRefGoogle Scholar
  41. 41.
    Lal, L., Li, Y., Smith, J., Sassano, A., Uddin, S., Parmar, S., Tallman, M.S., Minucci, S., Hay, N., Platanias, L.C. (2005) Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 105, 1669–1677.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee, J.H., Kim, K.T. (2004) Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J. Neurochem. 91, 634–647.PubMedCrossRefGoogle Scholar
  43. 43.
    Liao, Y.P., Ho, S.Y., Liou, J.C. (2004) Non-genomic regulation of transmitter release by retinoic acid at developing motoneurons in Xenopus cell culture. J. Cell Sci. 117, 2917–2924.PubMedCrossRefGoogle Scholar
  44. 44.
    Liou, J.C., Ho, S.Y., Shen, M.R., Liao, Y.P., Chiu, W.T., Kang, K.H. (2005) A rapid, nongenomic pathway facilitates the synaptic transmission induced by retinoic acid at the developing synapse. J. Cell Sci. 118, 4721–4730.PubMedCrossRefGoogle Scholar
  45. 45.
    Lopez-Andreo, M.J., Torrecillas, A., Conesa-Zamora, P., Corbalan-Garcia, S., Gomez-Fernandez, J.C. (2005) Retinoic acid as a modulator of the activity of protein kinase Calpha. Biochemistry 44, 11353–11360.PubMedCrossRefGoogle Scholar
  46. 46.
    Masia, S., Alvarez, S., de Lera, A.R., Barettino, D. (2007) Rapid, non-genomic actions of retinoic acid on phosphatidyl-Inositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol. Endocrinol. 21, 2391–2402.PubMedCrossRefGoogle Scholar
  47. 47.
    Ochoa, W.F., Torrecillas, A., Fita, I., Verdaguer, N., Corbalan-Garcia, S., Gomez-Fernandez, J.C. (2003) Retinoic acid binds to the C2-domain of protein kinase C(alpha). Biochemistry 42, 8774–8779.PubMedCrossRefGoogle Scholar
  48. 48.
    Poon, M.M., Chen, L. (2008) Retinoic acid-gated sequence-specific translational control by RARalpha. Proc. Natl. Acad. Sci. USA 105, 20303–20308.PubMedCrossRefGoogle Scholar
  49. 49.
    Rosenfeld, M.G., Lunyak, V., Glass, C.K. (2006) Sensors and signals: A coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428.PubMedCrossRefGoogle Scholar
  50. 50.
    Kruyt, F.A., Folkers, G., van den Brink, C.E., van der Saag, P.T. (1992) A cyclic AMP response element is involved in retinoic acid-dependent RAR beta 2 promoter activation. Nucleic Acids Res. 20, 6393–6399.PubMedCrossRefGoogle Scholar
  51. 51.
    Dräger, U.C., Luo, T., Wagner, E. (2008) Retinoic acid function in central visual pathways. In: Chalupa, L.M., Williams, R. (eds.), Eye, Retina and the Visual Systems of the Mouse, MIT Press, Cambridge, MA, pp. 363–376.Google Scholar
  52. 52.
    Luo, T., Wagner, E., Dräger, U.C. (2009) Integrating retinoic acid signaling with brain function. Dev. Psychol. 45, 139–150.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yasuo Sakai
    • 1
  • Ursula C. Dräger
    • 2
  1. 1.Department of Plastic SurgeryOsaka University School of MedicineOsakaJapan
  2. 2.Eunice Kennedy Shriver Center for Mental RetardationUniversity of Massachusetts Medical SchoolWalthamUSA

Personalised recommendations