Advertisement

Retinoids pp 263-275 | Cite as

Reverse-Phase High-Performance Liquid Chromatography (HPLC) Analysis of Retinol and Retinyl Esters in Mouse Serum and Tissues

  • Youn-Kyung Kim
  • Loredana Quadro
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 652)

Abstract

The ability to measure endogenous metabolites of retinoids (vitamin A and its derivatives) in biological samples is key to understanding the crucial physiological actions of vitamin A. Over the years, many assays and methods have been developed to analyze different retinoids in biological samples. Liquid chromatography is the best analytical technique for routine analysis of these compounds. However, due to their different chemical properties, different retinoid metabolites cannot be accurately separated and quantified in a single chromatographic run. Here, we will describe a reverse-phase HPLC isocratic method that enables extraction, separation, identification, and quantification of all-trans-retinol and different molecular species of retinyl ester with high accuracy, sensitivity, and reliability.

Key words

Reverse-phase HPLC retinol retinyl ester quantification separation mouse tissues retinoids vitamin A 

References

  1. 1.
    Balmer, J.E., Blomhoff, R. (2002) Gene expression regulation by retinoic acid. J. Lipid Res. 43, 1773–1808.PubMedCrossRefGoogle Scholar
  2. 2.
    Blomhoff, R., Blomhoff, H.K. (2006) Overview of retinoid metabolism and function. J. Neurobiol. 66, 606–630.PubMedCrossRefGoogle Scholar
  3. 3.
    Sporn, M.B., Roberts, A.B., Goodman, D.S. (1994) The Retinoids, Biology, Chemistry, and Medicine, 2nd ed., Raven Press, New York.Google Scholar
  4. 4.
    Vogel, S., Gamble, M.V., Blaner, W.S. (1999) Biosynthesis, absorption, metabolism and transport of retinoids. In: Nau, H., Blaner, W.S. (eds.), Handbook of Experimental Pharmacology, Retinoids, the Biochemical And Molecular Basis of Vitamin A and Retinoid Action, Springer Verlag Publishing, Heidelberg, Germany, pp. 31–95.Google Scholar
  5. 5.
    Olivecrona, T., Bengtsson-Olivecrona, G. (1993) Lipoprotein lipase and hepatic lipase. Curr. Opin. Lipidol. 4, 187–196.CrossRefGoogle Scholar
  6. 6.
    Goldberg, I.J. (1996) Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37, 693–707.PubMedGoogle Scholar
  7. 7.
    Goodman, D.S., Huang, H.S., Shiratori, T. (1965) Tissue distribution of newly absorbed vitamin A in the rat. J. Lipid Res. 6, 390–396.PubMedGoogle Scholar
  8. 8.
    Cooper, A.D. (1997) Hepatic uptake of chylomicron remnants. J. Lipid Res. 38, 2173–2192.PubMedGoogle Scholar
  9. 9.
    Blaner, W.S., Olson, J.A. (1994) Retinol and retinoic acid metabolism. In: Sporn, M.B., Roberts, A.B., Goodman, D.S. (eds.), The Retinoids, Biology, Chemistry and Medicine, Raven Press, New York, pp. 229–256.Google Scholar
  10. 10.
    Soprano, D.R., Blaner, W.S. (1994) Plasma retinol-binding protein. In: Sporn, M.B., Roberts, A.B., Goodman, D.S. (eds.), The Retinoids, Biology, Chemistry and Medicine, Raven Press, New York, pp. 257–282.Google Scholar
  11. 11.
    Quadro, L., Hamberger, L., Colantuoni, V., Gottesman, M.E., Blaner, W.S. (2003) Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models. Mol. Aspect Med. 24, 421–430.CrossRefGoogle Scholar
  12. 12.
    Kawaguchi, R., Yu, J., Honda, J., Hu, J., Whitelegge, J., Ping, P., Wiita, P., Bok, D., Sun, H. (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315, 820–825.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, O.D., Zabolotny, J.M., Kotani, K., Quadro, L., Kahn, B.B. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362.PubMedCrossRefGoogle Scholar
  14. 14.
    Ziouzenkova, O., Orasanu, G., Sharlach, M., Akiyama, T.E., Berger, J.P., Viereck, J., Hamilton, J.A., Tang, G., Dolnikowski, G.G., Vogel, S., Duester, G., Plutzky, J. (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat. Med. 13, 695–702.PubMedCrossRefGoogle Scholar
  15. 15.
    Fields, A.L., Soprano, D.R., Soprano, K.J. (2007) Retinoids in biological control and cancer. J. Cell Biochem. 102, 886–898.PubMedCrossRefGoogle Scholar
  16. 16.
    Goodman, A.B. (2006) Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J. Cell Physiol. 209, 598–603.PubMedCrossRefGoogle Scholar
  17. 17.
    Golzio, C., Martinovic-Bouriel, J., Thomas, S., Mougou-Zrelli, S., Grattagliano-Bessieres, B., Bonniere, M., Delahaye, S., Munnich, A., Encha-Razavi, F., Lyonnet, S., Vekemans, M., Attie-Bitach, T., Etchevers, H.C. (2007) Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am. J. Hum. Genet. 80, 1179–1187.PubMedCrossRefGoogle Scholar
  18. 18.
    Pasutto, F., Sticht, H., Hammersen, G., Gillessen-Kaesbach, G., Fitzpatrick, D.R., Nürnberg, G., Brasch, F., Schirmer-Zimmermann, H., Tolmie, J.L., Chitayat, D., Houge, G., Fernández-Martínez, L., Keating, S., Mortier, G., Hennekam, R.C., von der Wense, A., Slavotinek, A., Meinecke, P., Bitoun, P., Becker, C., Nürnberg, P., Reis, A., Rauch, A. (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am. J. Hum. Genet. 80, 550–560.PubMedCrossRefGoogle Scholar
  19. 19.
    Clagett-Dame, M., DeLuca, H.F. (2002) The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 22, 347–381.PubMedCrossRefGoogle Scholar
  20. 20.
    Kane, M.A., Folias, A.E., Napoli, J.L. (2008) HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal. Biochem. 378, 71–79.PubMedCrossRefGoogle Scholar
  21. 21.
    Kane, M. A, Chen, N., Sparks, S., Napoli, J.L. (2005) Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem. J. 388, 363–369.PubMedCrossRefGoogle Scholar
  22. 22.
    Kane, M.A., Folias, A.E., Wang, C., Napoli, J.L. (2008) Quantitative profiling of endogenous retinoic acid in vivo and in vitro by tandem mass spectrometry. Anal. Chem. 80, 1702–1708.PubMedCrossRefGoogle Scholar
  23. 23.
    Packer, L. (1990) Retinoids: Part A – molecular and metabolic aspects. Methods Enzymol. 189, 3–583.CrossRefGoogle Scholar
  24. 24.
    Roberts, A.B., Nichols, M.D., Frolik, C.A., Newton, D.L., Sporn, M.B. (1978) Assay of retinoids in biological samples by reverse-phase high-pressure liquid chromatography. Cancer Res. 38, 3327–3332.PubMedGoogle Scholar
  25. 25.
    Blaner, W.S., Hendriks, H.F., Brouwer, A., de Leeuw, A.M., Knook, D.L., Goodman, D.S. (1985) Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells. J. Lipid Res. 26, 1241–1251.PubMedGoogle Scholar
  26. 26.
    Napoli, J.L., Horst, R.L. (1998) Quantitative analyses of naturally occurring retinoids. Methods Mol. Biol. 89, 29–40.PubMedGoogle Scholar
  27. 27.
    Harrison, E.H., Blaner, W.S., Goodman, D.S., Ross, A.C. (1987) Subcellular localization of retinoids, retinoid-binding proteins, and acyl-CoA:retinol acyltransferase in rat liver. J. Lipid Res. 28, 973–981.PubMedGoogle Scholar
  28. 28.
    Furr, H.C., Cooper, D.A., Olson, J.A. (1986) Separation of retinyl esters by non-aqueous reversed-phase high-performance liquid chromatography. J. Chromatogr. 378, 45–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Redlich, C.A., Grauer, J.N., Van Bennekum, A.M., Clever, S.L., Ponn, R.B., Blaner, W.S. (1996) Characterization of carotenoid, vitamin A, and alpha-tocopheral levels in human lung tissue and pulmonary macrophages. Am. J. Respir. Crit. Care Med. 154, 1436–1443.PubMedGoogle Scholar
  30. 30.
    Kim, Y.K., Wassef, L., Hamberger, L., Piantedosi, R., Palczewski, K., Blaner, W.B., Quadro, L. (2008) Retinyl ester formation by lecithin:retinol acyltransferase (LRAT) is a key regulator of retinoid homeostasis in mouse embryogenesis. J. Biol. Chem. 283, 5611–5621.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Youn-Kyung Kim
    • 1
  • Loredana Quadro
    • 1
  1. 1.Department of Food Science and Rutgers Center for Lipid Research, School of Environmental and Biological SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations