Retinoids pp 209-227 | Cite as

Assay of Retinol-Binding Protein–Transthyretin Interaction and Techniques to Identify Competing Ligands

  • Nathan L. Mata
  • Kim Phan
  • Yun Han
Part of the Methods in Molecular Biology book series (MIMB, volume 652)


The principles of fluorescence resonance energy transfer have been utilized to develop a high-throughput assay which detects compounds that interfere with interaction between retinol-binding protein (RBP) and transthyretin (TTR). In this assay, the intrinsic fluorescence from the RBP–retinol complex excites a probe molecule which is covalently coupled to TTR. Generation of an emission signal from the TTR probe indicates interaction between RBP–retinol and TTR. Importantly, the inclusion of retinol in the assay allows discrimination of test compounds which bind RBP versus those which bind to TTR. Thus, compounds which bind to RBP must compete with retinol in order to affect RBP–TTR interaction. This feature of the assay will be useful to identify test compounds which are more likely to have an effect in vivo.

Key words

Fluorescence resonance energy transfer (FRET) inner filter effect Cogan plot retinol retinol-binding protein (RBP) transthyretin (TTR) N-(4-hydroxyphenyl)retinamide (HPR) 


  1. 1.
    Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, O.D., Zabolotny, J.M., Kotani, K., Quadro, L., Kahn, B.B. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362.PubMedCrossRefGoogle Scholar
  2. 2.
    Abahusain, M.A., Wright, J., Dickerson, J.W., de Vol, E.B. (1999) Retinol, alpha-tocopherol and carotenoids in diabetes. Eur. J. Clin. Nutr. 53, 630–635.PubMedCrossRefGoogle Scholar
  3. 3.
    Basualdo, C.G., Wein, E.E., Basu, T.K. (1997) Vitamin A (retinol) status of first nation adults with non-insulin-dependent diabetes mellitus. J. Am. Coll. Nutr. 16, 39–45.PubMedGoogle Scholar
  4. 4.
    Cho, Y.M., Youn, B.S., Lee, H., Lee, N., Min, S.S., Kwak, S.H., Lee, H.K., Park, K.S. (2006) Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care 29, 2457–2461.PubMedCrossRefGoogle Scholar
  5. 5.
    Graham, T.E., Yang, Q., Bluher, M., Hammarstedt, A., Ciaraldi, T.P., Henry, R.R., Wason, C.J., Oberbach, A., Jansson, P.A., Smith, U., et al. (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 354, 2552–2563.PubMedCrossRefGoogle Scholar
  6. 6.
    Munkhtulga, L., Nakayama, K., Utsumi, N., Yanagisawa, Y., Gotoh, T., Omi, T., Kumada, M., Erdenebulgan, B., Zolzaya, K., Lkhagvasuren, T., et al. (2007) Identification of a regulatory SNP in the retinol binding protein 4 gene associated with type 2 diabetes in Mongolia. Hum. Genet. 120, 879–888.PubMedCrossRefGoogle Scholar
  7. 7.
    Qi, Q., Yu, Z., Ye, X., Zhao, F., Huang, P., Hu, F.B., Franco, O.H., Wang, J., Li, H., Liu, Y., et al. (2007) Elevated retinol-binding protein 4 levels are associated with metabolic syndrome in Chinese people. J. Clin. Endocrinol. Metab. 92, 4827–4834.PubMedCrossRefGoogle Scholar
  8. 8.
    Delori, F.C., Dorey, C.K., Staurenghi, G., Arend, O., Goger, D.G., Weiter, J.J. (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest. Ophthalmol. Vis. Sci. 36, 718–729.PubMedGoogle Scholar
  9. 9.
    Delori, F.C., Staurenghi, G., Arend, O., Dorey, C.K., Goger, D.G., Weiter, J.J. (1995) In vivo measurement of lipofuscin in Stargardt’s disease – fundus flavimaculatus. Invest. Ophthalmol. Vis. Sci. 36, 2327–2331.PubMedGoogle Scholar
  10. 10.
    Schmitz-Valckenberg, S., Bultmann, S., Dreyhaupt, J., Bindewald, A., Holz, F.G., Rohrschneider, K. (2004) Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 45, 4470–4476.PubMedCrossRefGoogle Scholar
  11. 11.
    Cideciyan, A.V., Aleman, T.S., Swider, M., Schwartz, S.B., Steinberg, J.D., Brucker, A.J., Maguire, A.M., Bennett, J., Stone, E.M., Jacobson, S.G. (2004) Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: A reappraisal of the human disease sequence. Hum. Mol. Genet. 13, 525–534.PubMedCrossRefGoogle Scholar
  12. 12.
    Holz, F.G., Bellman, C., Staudt, S., Schutt, F., Volcker, H.E. (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 42, 1051–1056.PubMedGoogle Scholar
  13. 13.
    Kanai, M., Raz, A., Goodman, D.S. (1968) Retinol-binding protein: The transport protein for vitamin A in human plasma. J. Clin. Invest. 47, 2025–2044.PubMedCrossRefGoogle Scholar
  14. 14.
    Blaner, W.S. (1989) Retinol-binding protein: The serum transport protein for vitamin A. Endocr. Rev. 10, 308–316.PubMedCrossRefGoogle Scholar
  15. 15.
    Lakowicz, J.R. (1999) Principles of Flourescence Spectroscopy, Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
  16. 16.
    Förster, T. (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Physik. 437, 55–75.CrossRefGoogle Scholar
  17. 17.
    Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.PubMedCrossRefGoogle Scholar
  18. 18.
    Cogan, U., Kopelman, M., Mokady, S., Shinitzky, M. (1976) Binding affinities of retinol and related compounds to retinol binding proteins. Eur. J. Biochem. 65, 71–78.PubMedCrossRefGoogle Scholar
  19. 19.
    Noy, N., Xu, Z.J. (1990) Interactions of retinol with binding proteins: Implications for the mechanism of uptake by cells. Biochemistry 29, 3878–3883.PubMedCrossRefGoogle Scholar
  20. 20.
    Noy, N. (2000) Retinoid-binding proteins: Mediators of retinoid action. Biochem. J. 348(Pt 3), 481–495.PubMedCrossRefGoogle Scholar
  21. 21.
    Malpeli, G., Folli, C., Berni, R. (1996) Retinoid binding to retinol-binding protein and the interference with the interaction with transthyretin. Biochim. Biophys. Acta 1294, 48–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Berni, R., Formelli, F. (1992) In vitro interaction of fenretinide with plasma retinol-binding protein and its functional consequences. FEBS Lett. 308, 43–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Horwitz, J., Heller, J. (1973) Interactions of all-trans, 9-, 11-, and 13-cis-retinal, all-trans-retinyl acetate, and retinoic acid with human retinol-binding protein and prealbumin. J. Biol. Chem. 248, 6317–6324.PubMedGoogle Scholar
  24. 24.
    van Jaarsveld, P.P., Edelhoch, H., Goodman, D.S., Robbins, J. (1973) The interaction of human plasma retinol-binding protein and prealbumin. J. Biol. Chem. 248, 4698–4705.PubMedGoogle Scholar
  25. 25.
    Kopelman, M., Cogan, U., Mokady, S., Shinitzky, M. (1976) The interaction between retinol-binding proteins and prealbumins studied by fluorescence polarization. Biochim. Biophys. Acta 439, 449–460.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nathan L. Mata
    • 1
  • Kim Phan
    • 1
  • Yun Han
    • 1
  1. 1.Sirion TherapeuticsSan DiegoUSA

Personalised recommendations