Advertisement

Retinoids pp 1-54 | Cite as

Quantification of Endogenous Retinoids

  • Maureen A. Kane
  • Joseph L. Napoli
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 652)

Abstract

Numerous physiological processes require retinoids, including development, nervous system function, immune responsiveness, proliferation, differentiation, and all aspects of reproduction. Reliable retinoid quantification requires suitable handling and, in some cases, resolution of geometric isomers that have different biological activities. Here we describe procedures for reliable and accurate quantification of retinoids, including detailed descriptions for handling retinoids, preparing standard solutions, collecting samples and harvesting tissues, extracting samples, resolving isomers, and detecting with high sensitivity. Sample-specific strategies are provided for optimizing quantification. Approaches to evaluate assay performance also are provided. Retinoid assays described here for mice also are applicable to other organisms including zebrafish, rat, rabbit, and human and for cells in culture. Retinoid quantification, especially that of retinoic acid, should provide insight into many diseases, including Alzheimer’s disease, type 2 diabetes, obesity, and cancer.

Key words

Retinoid retinoic acid retinal retinaldehyde retinol retinyl ester mass spectrometry LC/MS/MS HPLC 

References

  1. 1.
    Wolf, G. (1984) Multiple functions of vitamin A. Physiol. Rev. 64, 873–937.PubMedGoogle Scholar
  2. 2.
    Sporn, M.B., Roberts, A.B., Goodman, D.S. (eds.). (1994) The Retinoids: Biology, Chemistry, and Medicine, 2nd ed., Raven, New York.Google Scholar
  3. 3.
    Wolf, G. (2001) Retinoic acid homeostasis: Retinoic acid regulates liver retinol esterification as well as its own catabolic oxidation in liver. Nutr. Rev. 59, 391–394.PubMedCrossRefGoogle Scholar
  4. 4.
    Harrison, E.H. (2005) Mechanisms of digestion and absorption of dietary vitamin A. Annu. Rev. Nutr. 25, 87–103.PubMedCrossRefGoogle Scholar
  5. 5.
    Blomhoff, R., Blomhoff, H.K. (2006) Overview of retinoid metabolism and function. J. Neurobiol. 66, 606–630.PubMedCrossRefGoogle Scholar
  6. 6.
    Napoli, J.L. (1999) Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim. Biophys. Acta 1440, 139–162.PubMedCrossRefGoogle Scholar
  7. 7.
    Napoli, J.L. (1999) Retinoic acid: its biosynthesis and metabolism. Prog. Nucleic Acid Res. Mol. Biol. 63, 139–188.Google Scholar
  8. 8.
    Chambon, P. (1996) A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 940–954.PubMedGoogle Scholar
  9. 9.
    Shaw, N., Elholm, M., Noy, N. (2003) Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J. Biol. Chem. 278, 41589–41592.PubMedCrossRefGoogle Scholar
  10. 10.
    Schug, T.T., Berry, D.C., Shaw, N.S., Travis, S.N., Noy, N. (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129, 723–733.PubMedCrossRefGoogle Scholar
  11. 11.
    Balmer, J.E., Blomhoff, R. (2002) Gene expression regulation by retinoic acid. J. Lipid Res. 43, 1773–1808.PubMedCrossRefGoogle Scholar
  12. 12.
    Ruberte, E., Friederich, V., Chambon, P., Moriss-Kay, G. (1993) Retinoic acid receptors and cellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development. Development 118, 267–282.PubMedGoogle Scholar
  13. 13.
    Ong, D.E. (1994) Cellular transport and metabolism of vitamin A: Roles of the cellular retinoid-binding proteins. Nutr. Rev. 52, S24–S31.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamagata, T., Momoi, M.Y., Yanagisawa, M., Kumagai, H., Yamakado, M., Momoi, T. (1994) Changes of the expression and distribution of retinoic acid receptors during neurogenesis in mouse embryos. Brain Res. Dev. Brain Res. 77, 163–176.PubMedCrossRefGoogle Scholar
  15. 15.
    Krezel, W., Kastner, P., Chambon, P. (1999) Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89, 1291–1300.PubMedCrossRefGoogle Scholar
  16. 16.
    Quadro, L., Blaner, W.S., Salchow, D.J., Vogel, S., Piantedosi, R., Gouras, P., Freeman, S., Cosma, M.P., Colantuoni, V., Gottesman, M.E. (1999) Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 18, 4633–4644.PubMedCrossRefGoogle Scholar
  17. 17.
    Ghyselinck, N.B., Bavik, C., Sapin, V., Mark, M., Bonnier, D., Hindelang, C., Dierich, A., Nilsson, C.B., Hakansson, H., Sauvant, P., Azais-Braesco, V., Frasson, M., Picaud, S., Chambon, P. (1999) Cellular retinol-binding protein I is essential for vitamin A homeostasis. EMBO J. 18, 4903–4914.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang, X.E.L., Lu, J., Tso, P., Blaner, W.S., Levin, M.S., Li, E. (2002) Increased neonatal mortality in mice lacking cellular retinol-binding protein II. J. Biol. Chem. 277, 36617–36623.PubMedCrossRefGoogle Scholar
  19. 19.
    Vogel, S., Mendelsohn, C.L., Mertz, J.R., Piantedosi, R., Waldburger, C., Gottesman, M.E., Blaner, W.S. (2001) Characterization of a new member of the fatty acid binding protein family that binds all-trans-retinol. J. Biol. Chem. 276, 1353–1360.PubMedCrossRefGoogle Scholar
  20. 20.
    Gorry, P., Lufkin, T., Dierich, A., Rochette-Egly, C., Decimo, D., Dolle, P., Mark, M., Durand, B., Chambon, P. (1994) The cellular retinoic acid binding protein I is dispensable. Proc. Natl. Acad. Sci. USA 91, 9032–9036.PubMedCrossRefGoogle Scholar
  21. 21.
    Lampron, C., Rochette-Egly, C., Gorry, P., Dolle, P., Mark, M., Lufkin, T., LeMeur, M., Chambon, P. (1995) Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121, 539–548.PubMedGoogle Scholar
  22. 22.
    O’Byrne, S.M., Wongsiriroj, N., Libien, J., Vogel, S., Goldberg, I.J., Baerh, W., Palczewski, K., Blaner, W.S. (2005) Retinoid absorption and storage is impaired in mice lacking lecithin:retinol acyltransferase (LRAT). J. Biol. Chem. 280, 35647–35657.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu, L., Gudas, L.J. (2005) Disruption of the lecithin:retinol acyltransferase gene makes mice more susceptible to vitamin A deficiency. J. Biol. Chem. 280, 40226–40234.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang, M., Hu, P., Krois, C.R., Kane, M.A., Napoli, J.L. (2007) Altered vitamin A homeostasis and increased size and adiposity in the rdh1-null mouse. FASEB J. 21, 2886–2896.PubMedCrossRefGoogle Scholar
  25. 25.
    Hu, P., Zhang, M., Napoli, J.L. (2007) Ontogeny of rdh9 (Crad3) expression: Ablation causes changes in retinoid and steroid metabolizing enzymes, but RXR and androgen signaling seem normal. Biochim. Biophys. Acta 1770, 694–705.PubMedCrossRefGoogle Scholar
  26. 26.
    Germain, P., Chambon, P., Eichele, G., Evans, R.M., Lazar, M.A., Leid, M., De Lera, A.R., Lotan, R., Mangelsdorf, D.J., Gronemeyer, H. (2006) International union of pharmacology: LXIII. Retinoid X receptors. Pharmacol. Rev. 58, 760–772.PubMedCrossRefGoogle Scholar
  27. 27.
    Kawaguchi, R., Yu, J., Honda, J., Hu, J., Whitelegge, J., Ping, P., Wiita, P., Bok, D., Sun, H. (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315, 820–825.PubMedCrossRefGoogle Scholar
  28. 28.
    Misner, D.L., Jacobs, S., Shimizu, Y., de Urquiza, A.M., Solomin, L., Perlmann, T., DeLuca, L.M., Stevens, C.F., Evans, R.M. (2001) Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc. Natl. Acad. Sci. USA 98, 11714–11719.PubMedCrossRefGoogle Scholar
  29. 29.
    Deltour, L., Foglio, M.H., Duester, G. (1999) Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3, and Adh4 null mutant mice. J. Biol. Chem. 274, 16796–16801.PubMedCrossRefGoogle Scholar
  30. 30.
    Molotkov, A., Duester, G. (2002) Retinol/Ethanol drug interaction during acute alcohol intoxication in mice involves inhibition of retinol metabolism to retinoic acid by alcohol dehydrogenases. J. Biol. Chem. 277, 22553–22557.PubMedCrossRefGoogle Scholar
  31. 31.
    Lei, Z., Chen, W., Zhang, M., Napoli, J.L. (2003) Reduction of all- trans-retinal in the mouse liver peroxisome fraction by the short-chain dehydrogenase/reductase RRD: Induction by the PPARα ligand clofibrate. Biochemistry 42, 4190–4196.PubMedCrossRefGoogle Scholar
  32. 32.
    Fiorella, P.D., Olson, J.R., Napoli, J.L. (1995) 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces diverse retinoic acid metabolites in multiple tissues of the Sprague-Dawley rat. Toxicol. Appl. Pharmacol. 134, 222–228.PubMedCrossRefGoogle Scholar
  33. 33.
    Kransler, K.M., Tonucci, D.A., McGarrigle, B.P., Napoli, J.L., Olson, J.R. (2007) Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters retinoid homeostasis in maternal and perinatal tissues of the Holtzman rat. Toxicol. Appl. Pharmacol. 224, 29–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoegberg, P., Schmidt, C.K., Fletcher, N., Nilsson, C.B., Trossvik, C., Schuur, A.G., Brouwer, A., Nau, H., Ghyselinck, N.B., Chambon, P., Hakansson, H. (2005) Retinoid status and responsiveness to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking retinoid binding protein or retinoid receptor forms. Chem. Biol. Interact. 156, 25–39.PubMedCrossRefGoogle Scholar
  35. 35.
    Staels, B. (2001) Regulation of lipid and lipoprotein metabolism by retinoids. J. Am. Acad. Dermatol. 45, S158–S167.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, Q.D., Zabolotny, J.M., Kotani, K., Quadro, L., Kahn, B.B. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolf, G. (2007) Serum retinol-binding protein: A link between obesity, insulin resistance, and type 2 diabetes. Nutr. Rev. 65, 251–256.PubMedCrossRefGoogle Scholar
  38. 38.
    Ziouzenkova, O., Orasanu, G., Sharlach, M., Akiyama, T.E., Berger, J.P., Viereck, J., Hamilton, J.A., Tang, G., Dolnikowski, G.G., Volgel, S., Duester, G., Plutzky, J. (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat. Med. 13, 695–702.PubMedCrossRefGoogle Scholar
  39. 39.
    Farias, E.F., Ong, D.E., Ghyselinck, N.B., Nakajo, S., Kuppumbatti, Y.S., Mira y Lopez, R. (2005) Cellular retinol-binding protein I, a regulator of breast epithelial retinoic acid receptor activity, cell differentiation, and tumorigenicity. J. Natl. Cancer Inst. 97, 21–29.PubMedCrossRefGoogle Scholar
  40. 40.
    Lotan, R. (2005) A crucial role for cellular retinol-binding protein I in retinoid signaling. J. Natl. Cancer Inst. 97, 3–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Fields, A.L., Soprano, D.R., Soprano, K.J. (2007) Retinoids in biological control and cancer. J. Cell. Biochem. 102, 886–898.PubMedCrossRefGoogle Scholar
  42. 42.
    Szeto, W., Jiang, W., Tice, D.A., Rubinfeld, B., Hollingshead, P.G., Fong, S.E., Dugger, D.L., Pham, T., Yansura, D.G., Wong, T.A., Grimaldi, J.C., Corpuz, R.T., Singh, J.S., Frantz, G.D., Devaux, B., Crowley, C.W., Schwall, R.H., Eberhard, D.A., Rastelli, L., Polakis, P., Pennica, D. (2001) Overexpression of the retinoic acid-responsive gene Stra6 in human cancers and its synergistic induction by Wnt-1 and retinoic acid. Cancer Res. 61, 4197–4205.PubMedGoogle Scholar
  43. 43.
    Goodman, A.B. (2006) Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J. Cell. Phys. 209, 598–603.CrossRefGoogle Scholar
  44. 44.
    Barua, A.B., Furr, H.C. (1998) Properties of retinoids. Mol. Biotechnol. 10, 167–182.PubMedCrossRefGoogle Scholar
  45. 45.
    Napoli, J.L. (1986) Quantification of physiological levels of retinoic acid. Method Enzymol. 123, 112–124CrossRefGoogle Scholar
  46. 46.
    Barua, A.B., Furr, H.C. (1998) Properties of retinoids: Structure, handling, and preparation. Methods Mol. Biol. 89, 3–28.PubMedGoogle Scholar
  47. 47.
    Napoli, J.L., Horst, R.L. (1998) Quantitative analyses of naturally occurring retinoids. Methods Mol. Biol. 89, 29–40.PubMedGoogle Scholar
  48. 48.
    Schmidt, C.K., Brouwer, A., Nau, H. (2003) Chromatographic analysis of endogenous retinoids in tissues and serum. Anal. Biochem. 315, 36–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Kane, M.A., Chen, N., Sparks, S., Napoli, J.L. (2005) Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem. J. 388, 363–369.PubMedCrossRefGoogle Scholar
  50. 50.
    Kane, M.A., Folias, A.E., Wang, C., Napoli, J.L. (2008) Quantitative profiling of endogenous retinoic acid in vivo and in vitro by tandem mass spectrometry. Anal. Chem. 80, 1702–1708.PubMedCrossRefGoogle Scholar
  51. 51.
    Kane, M.A., Folias, A.E., Napoli, J.L. (2008) HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal. Biochem. 378, 71–79.PubMedCrossRefGoogle Scholar
  52. 52.
    Sucov, H.M., Evans, R.M. (1995) Retinoic acid and retinoic acid receptors in development. Mol. Neurobiol. 10, 169–184.PubMedCrossRefGoogle Scholar
  53. 53.
    Bershad, S., Rubinstein, A., Paterniti, J.R., Le, N.A., Poliak, S.C., Heller, B., Ginsberg, H.N., Fleischmajer, R., Brown, W.V. (1985) Changes in plasma lipids and lipoproteins during isotretinoin therapy for acne. N. Engl. J. Med. 313, 981–985.PubMedCrossRefGoogle Scholar
  54. 54.
    Rodondi, N., Darioli, R., Ramelet, A.-A., Hohl, D., Lenain, V., Perdrix, J., Wietlisbach, V., Riesen, W.F., Walther, T., Medinger, L., Nicod, P., Desvergne, B., Mooser, V. (2002) High risk for hyperlipidemia and the metabolic syndrome after an episode of hypertriglyceridemia during 13-cis retinoic acid therapy for acne: A pharmacogenetic study. Ann. Intern. Med. 136, 582–589.PubMedGoogle Scholar
  55. 55.
    Heliovaara, M. K., Remitz, A., Reitamo, S., Teppo, A.-M., Karonen, S.-L., Ebeling, P. (2007) 13-cis-Retinoic acid therapy induces insulin resistance, regulates inflammatory parameters, and paradoxically increases serum adiponectin concentration. Metabolism 56, 786–791.PubMedCrossRefGoogle Scholar
  56. 56.
    McCormick, A.M., Kroll, K.D., Napoli, J.L. (1983) 13-cis-retinoic acid metabolism in vivo. The major tissue metabolites in the rat have the all-trans configuration. Biochemistry 22, 3933–3940.PubMedCrossRefGoogle Scholar
  57. 57.
    Arnhold, T., Tzimas, G., Wittfoht, W., Plonait, S., Nau, H. (1996) Identification of 9-cis-retinoic acid, 9,13-di-cis-retinoic acid, and 14-hydroxy-4,14-retro-retinol in human plasma after liver consumption. Pharmacol. Lett. 59, 169–177.Google Scholar
  58. 58.
    Horst, R.L., Reinhardt, T.A., Goff, J.P., Nonnecke, B.J., Gambhir, V.K., Fiorella, P.D., Napoli, J.L. (1995) Identification of 9-cis,13-cis-retinoic acid as a major circulating retinoid in plasma. Biochemistry 34, 1203–1209.PubMedCrossRefGoogle Scholar
  59. 59.
    Horst, R.L., Reinhardt, T.A., Goff, J.P., Koszewski, N.J., Napoli, J.L. (1995) 9,13-Di-cis-retinoic acid is the major circulating geometric isomer of retinoic acid in the periparturient period. Arch. Biochem. Biophys. 322, 235–239.PubMedCrossRefGoogle Scholar
  60. 60.
    Wang, Y., Chang, W.Y., Prins, G.S., van Breemen, R.B. (2001) Simultaneous determination of all-trans, 9-cis, 13-cis retinoic acid and retinol in rat prostate using liquid chromatography-mass spectrometry. J. Mass. Spectrom. 36, 882–888.PubMedCrossRefGoogle Scholar
  61. 61.
    Gundersen, T.E., Bastani, N.E., Blomhoff, R. (2007) Quantitative high-throughput determination of endogenous retinoids in human plasma using triple-stage liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 21, 1176–1186.PubMedCrossRefGoogle Scholar
  62. 62.
    Luo, T., Wagner, E., Grun, F., Drager, U.C. (2004) Retinoic acid signaling in the brain marks the formation of optic projections, maturation of the dorsal telencephalon, and function of limbic sites. J. Comp. Neurol. 470, 297–316.PubMedCrossRefGoogle Scholar
  63. 63.
    Wagner, M.A. (1997) Use of reporter cells to study endogenous retinoid sources in embryonic tissues. Methods Enzymol. 282, 98–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Zetterstrom, R.H., Lindqvist, E., Mata de Urquiza, A., Tomac, A., Eriksson, U., Perlmann, T., Olson, L. (1999) Role of retinoids in the CNS: Differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur. J. Neurosci. 11, 407–416.PubMedCrossRefGoogle Scholar
  65. 65.
    Wagner, M., Han, B., Jessell, T.M. (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116, 55–66.PubMedGoogle Scholar
  66. 66.
    National Research Council. (1995) Nutrient Requirements of Laboratory Animals, 4th ed., National Academy Press, Washington, D.C.Google Scholar
  67. 67.
    Biesalski, H.K. (1989) Comparative assessment of the toxicology of vitamin A and retinoids in man. Toxicology 57, 117–161.PubMedCrossRefGoogle Scholar
  68. 68.
    Gundersen, T.E., Blomhoff, R. (2001) Qualitative and quantitative liquid chromatographic determination of natural retinoids in biological samples. J. Chromatogr. A 935, 13–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Wyss, R., Bucheli, F. (1997) Determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin), and their 4-oxo metabolites in human and animal plasma by high-performance liquid chromatography with automated column switching and ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl. 700, 31–47.PubMedCrossRefGoogle Scholar
  70. 70.
    Hagen, J.J., Washco, K.A., Monning, C.A. (1996) Determination of retinoids by reversed-phase capillary liquid chromatography with amperometric electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 677, 225–231.CrossRefGoogle Scholar
  71. 71.
    Sakhi, A.K., Gundersen, T.E., Ulven, S.M., Blomhoff, R., Laundanes, E. (1998) Quantitative determination of endogenous retinoids in mouse embryos by high-performance liquid chromatography with online solid-phase extraction, column switching, and electrochemical detection. J. Chromatogr. A 828, 451–460.PubMedCrossRefGoogle Scholar
  72. 72.
    Ulven, S.M., Gundersen, T.E., Weedon, M.S., Landaas, V.O., Sakhi, A.K., Fromm, S.H., Geronimo, B.A., Moskaug, J.O., Blomhoff, R. (2000) Identification of endogenous retinoids, enzymes, binding proteins, and receptors during early post-implantation development in the mouse: Important role of retinal dehydrogenase type 2 in synthesis of all-trans-retinoic acid. Dev. Biol. 220, 379–391.PubMedCrossRefGoogle Scholar
  73. 73.
    Toth, K., Stulik, K., Kutner, W., Feher, Z., Linder, E. (2004) Electrochemical detection in liquid flow techniques: Characterization and classification. Pure Appl. Chem. 76, 1119–1138.CrossRefGoogle Scholar
  74. 74.
    Napoli, J.L., Pramanik, B.C., Williams, J.B., Dawson, M.I., Hobbs, P.D. (1985) Quantification of retinoic acid by gas–liquid chromatography–mass spectrometry: Total versus all-trans retinoic acid in human plasma. J. Lipid Res. 26, 387–392.PubMedGoogle Scholar
  75. 75.
    Napoli, J.L. (1990) Quantification and characteristics of retinoid synthesis from retinol and β-carotene in tissue fractions and established cell lines. Methods Enzymol. 189, 470–482.PubMedCrossRefGoogle Scholar
  76. 76.
    Schmidt, C.K., Volland, J., Hamscher, G., Nau, H. (2002) Characterization of a new endogenous vitamin A metabolite. Biochim. Biophys. Acta 1583, 237–251.PubMedCrossRefGoogle Scholar
  77. 77.
    McCaffery, P., Evans, J., Koul, O., Volpert, A., Reid, K., Ullman, M.D. (2002) Retinoid quantification by HPLC/MSn. J. Lipid Res. 43, 1143–1149.PubMedCrossRefGoogle Scholar
  78. 78.
    Chithalen, J.V., Luu, L., Petkovich, M., Jones, G. (2002) HPLC–MS/MS analysis of products generated from all-trans-retinoic acid using recombinant human CYP26A. J. Lipid Res. 43, 1133–1142.PubMedCrossRefGoogle Scholar
  79. 79.
    Ruhl, R. (2006) Method to determine 4-oxo-retinoic acids, retinoic acids, and retinol in serum and cell extracts by liquid chromatography/diode-array detection atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20, 2497–2504.PubMedCrossRefGoogle Scholar
  80. 80.
    David, D.C., Hoerndli, F., Götz, J. (2005) Functional Genomics meets neurodegenerative disorders Part I: Transcriptomic and proteomic technology. Prog. Neurobiol. 76, 153–168.PubMedCrossRefGoogle Scholar
  81. 81.
    Sadowski, P.G., Dunkley, T.P., Shadforth, I.P., Dupree, P., Bessant, C., Griffin, J.L., Lilley, K.S. (2006) Quantitative proteomic approach to study subcellular localization of membrane proteins. Nat. Protoc. 1, 1778–1789.PubMedCrossRefGoogle Scholar
  82. 82.
    Ferrara, C.T., Wang, P., Neto, E.C., Stevens, R.D., Bain, J.R., Wenner, B.R., Ilkayeva, O.R., Keller, M.P., Blasiole, D.A., Kendziorski, C., Yandell, B.S., Newgard, C.B., Attie, A.D. (2008) Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet. 4, e1000034.PubMedCrossRefGoogle Scholar
  83. 83.
    Furr, H.C., Barua, A.B., Olson, J.A. (1994) Analytical methods. In: Sporn, M.B., Roberts, A.B., Goodman, D.S. (eds.), The Retinoids: Biology, Chemistry, and Medicine, 2nd ed., Raven Press, New York, pp. 195–196.Google Scholar
  84. 84.
    Hubbard, R. Brown, P.K., Bownds, D. (1971) Methodology of vitamin A and visual pigments. Methods Enzymol. 18C, 615–653.CrossRefGoogle Scholar
  85. 85.
    Robeson, C.D., Cawley, J.D., Weisler, L., Stern, M.H., Edinger, C.C., Checkak, A.J. (1955) Chemistry of vitamin A. XXIV. The synthesis of geometric isomers of vitamin A via methyl β-methylglutaconate. J. Am. Chem. Soc. 77, 4111–4119.CrossRefGoogle Scholar
  86. 86.
    Robeson, C.D., Blum, W.P., Dieterle, J.M., Cawley, J.D., Baxter, J.G. (1955) Chemistry of vitamin A. XXV. Geometrical isomers of vitamin A aldehyde and an isomer of its α-ionone analog. J. Am. Chem. Soc. 77, 4120–4125.CrossRefGoogle Scholar
  87. 87.
    Olson, J.A. (1990) Vitamin A. In: Machlin, L.J. (ed.), Handbook of Vitamins, Marcel-Dekker, New York, pp. 1–57.Google Scholar
  88. 88.
    Schwieter, U., Isler, O. (1967) Vitamin A and carotene: Chemistry. In: Sebrell, W.H., Jr., Harris, R.H. (eds.), The Vitamins, 2nd ed., vol. 1, Academic Press, New York, pp. 5–101.Google Scholar
  89. 89.
    von Planta, C., Schweiter, U. Chopard-dit-Jean, L., Ruegg, R., Kofler, M., Isler, O. (1962) Physikalische eigenschaften von isomeren vitamin-A- and vitamin -A2-verbindungen [Physical properties of isomeric vitamin A and vitamin A2 compounds]. Helv. Chim. Acta. 45, 548–561.CrossRefGoogle Scholar
  90. 90.
    Rao, M.S.S., John, J., Cama, H.R. (1972) Studies on vitamin A2: Preparation, properties, metabolism, and biological activity of 4-oxoretinoic acid. Int. J. Vitamin. Nutr. Res. 42, 368–370.Google Scholar
  91. 91.
    Vahlquist, A., Torma, H., Rollman, O., Andersson, E. (1990) High-performance liquid chromatography of natural and synthetic retinoids in human skin samples. Methods Enzymol. 190, 163–174.PubMedCrossRefGoogle Scholar
  92. 92.
    Ross, A.C. (1981) Separation of long-chain fatty esters of retinol by high-performance liquid chromatography. Anal. Biochem. 115, 324–330.PubMedCrossRefGoogle Scholar
  93. 93.
    Tsukida, K., Ito, M., Tanaka, T., Yagi, I. (1985) High-performance liquid chromatographic and spectroscopic characterization of stereoisomeric retinaloximes: Improvements in resolution and implications of the method. J. Chromatogr. 331, 265–272.CrossRefGoogle Scholar
  94. 94.
    Van Kuijk, F.J.G.M., Handleman, G.J., Dratz, E.A. (1985) Rapid analysis of the major classes of retinoids by step gradient reversed-phase high performance liquid chromatography using retinal (O -ethyl) oxime derivatives. J. Chromatogr. 348, 241–251.PubMedCrossRefGoogle Scholar
  95. 95.
    Landers, G.M., Olson, J.A. (1988) Rapid, simultaneous determination of isomers of retinal, retinal oxime, and retinol by high-performance liquid chromatography. J. Chromatogr. 438, 383–392.PubMedCrossRefGoogle Scholar
  96. 96.
    Blumberg, B., Bolado, J., Jr., Derguini, F., Craig, A.G., Moreno, T.A., Chakravarti, D., Heyman, R.A., Buck, J., Evans, R.M. (1996) Novel retinoic acid receptor ligands in Xenopus embryos. Proc. Natl. Acad. Sci. USA 93, 4873–4878.PubMedCrossRefGoogle Scholar
  97. 97.
    White, J.A., Ramshaw, H., Taimi, M., Stangle, W., Zhang, A., Everingham, S., Creighton, S., Tam, S.P., Jones, G., Petkovich, M. (2000). Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism. Proc. Natl. Acad. Sci. USA 97, 6403–6408.PubMedCrossRefGoogle Scholar
  98. 98.
    Taimi, M., Helvig, C., Wisniewski, J., Ramshaw, H., White, J., Amad, M., Korczak, B., Petkovich, M. (2004) A novel human cytochrome P450, CYP26C1, involved in metabolism of 9-cis and all-trans isomers of retinoic acid. J. Biol. Chem. 279, 77–85.PubMedCrossRefGoogle Scholar
  99. 99.
    Williams, J.B., Pramanik, B.C., Napoli, J.L. (1984) Vitamin A metabolism: Analysis of steady-state neutral metabolites in rat tissues. J. Lipid. Res. 25, 638–645.PubMedGoogle Scholar
  100. 100.
    Dorsey, J.G. (2000) Column theory and resolution in liquid chromatography. In: Meyers, R.A. (ed.), Encyclopedia of Analytical Chemistry, Wiley, New York, pp. 11334–11342.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maureen A. Kane
    • 1
  • Joseph L. Napoli
    • 2
  1. 1.Department of Pharmaceutical SciencesUniversity of MarylandBaltimoreUSA
  2. 2.Department of Nutritional Science and ToxicologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations