Bioluminescence Imaging of Calcium Oscillations Inside Intracellular Organelles

  • Carlos Villalobos
  • María Teresa Alonso
  • Javier García-Sancho
Part of the Methods in Molecular Biology™ book series (MIMB, volume 574)


Ca2+ oscillations inside intracellular organelles are important for regulation of functions such as gene expression at the nucleus, respiration at mitochondria or protein processing at the endoplasmic reticulum. Targeted aequorins are excellent calcium probes for subcellular analysis, but single-cell imaging has proven difficult because of low light yield. Here we describe a procedure that combines virus-based expression of targeted aequorins with photon-counting imaging. This methodology allows real-time resolution of changes of cytosolic, mitochondrial or nuclear Ca2+ signals at the single-cell level.

Key words

Bioluminescence imaging aequorin herpes simplex virus calcium oscillations mitochondria nucleus endoplasmic reticulum anterior pituitary pancreatic islets of Langerhans β cells 



Financial support from the Spanish Ministerio de Educación y Ciencia (grant BFU-2006-60157) is gratefully acknowledged.


  1. 1.
    Shimomura, O., Musicki, B., Kishi, Y., and Inouye, S. (1993) Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 14 , 373–378.PubMedCrossRefGoogle Scholar
  2. 2.
    Rizzuto, R., Simpson, A. W., Brini, M., and Pozzan, T. (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358 , 325–327.PubMedCrossRefGoogle Scholar
  3. 3.
    Badminton, M. N., Campbell, A. K., and Rembold, C. M. (1996) Differential regulation of nuclear and cytosolic Ca2+ in HeLa cells. J Biol Chem 271 , 31210–31214.PubMedCrossRefGoogle Scholar
  4. 4.
    Manjarres, I. M., Chamero, P., Domingo, B., Molina, F., Llopis, J., Alonso, M. T., and Garcia-Sancho, J. (2008) Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflugers Arch 455 , 961–970.PubMedCrossRefGoogle Scholar
  5. 5.
    Alonso, M. T., Villalobos, C., Chamero, P., Alvarez, J., and Garcia-Sancho, J. (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40 , 513–525.PubMedCrossRefGoogle Scholar
  6. 6.
    Montero, M., Alonso, M. T., Carnicero, E., Cuchillo-Ibanez, I., Albillos, A., Garcia, A. G., Garcia-Sancho, J., and Alvarez, J. (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2 , 57–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Alvarez, J., and Montero, M. (2002) Measuring [Ca2+] in the endoplasmic reticulum with aequorin. Cell Calcium 32 , 251–260.PubMedCrossRefGoogle Scholar
  8. 8.
    Geller, A. I., and Breakefield, X. O. (1988) A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241 , 1667–1669.PubMedCrossRefGoogle Scholar
  9. 9.
    Lim, F., Hartley, D., Starr, P., Song, S., Lang, P., Yu, L., Wang, Y., and Geller, A. I. (1997) Use of defective herpes-derived plasmid vectors. Methods Mol Biol 62, 223–232.PubMedGoogle Scholar
  10. 10.
    Villalobos, C., Nunez, L., Chamero, P., Alonso, M. T., and Garcia-Sancho, J. (2001) Mitochondrial [Ca2+] oscillations driven by local high [Ca2+] domains generated by spontaneous electric activity. J Biol Chem 276 , 40293–40297.PubMedGoogle Scholar
  11. 11.
    Chamero, P., Villalobos, C., Alonso, M. T., and Garcia-Sancho, J. (2002) Dampening of cytosolic Ca2+ oscillations on propagation to nucleus. J Biol Chem 277 , 50226–50229.PubMedCrossRefGoogle Scholar
  12. 12.
    Villalobos, C., Nadal, A., Nunez, L., Quesada, I., Chamero, P., Alonso, M. T., and Garcia-Sancho, J. (2005) Bioluminescence imaging of nuclear calcium oscillations in intact pancreatic islets of Langerhans from the mouse. Cell Calcium 38 , 131–139.PubMedCrossRefGoogle Scholar
  13. 13.
    Quesada, I., Villalobos, C., Nunez, L., Chamero, P., Alonso, M. T., Nadal, A., and Garcia-Sancho, J. (2008) Glucose induces synchronous mitochondrial calcium oscillations in intact pancreatic islets. Cell Calcium 43 , 39–47.PubMedCrossRefGoogle Scholar
  14. 14.
    Alonso, M. T., Barrero, M. J., Carnicero, E., Montero, M., Garcia-Sancho, J., and Alvarez, J. (1998) Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium 24 , 87–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Villalobos, C., Nunez, L., Montero, M., Garcia, A. G., Alonso, M. T., Chamero, P., Alvarez, J., and Garcia-Sancho, J. (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16 , 343–353.PubMedCrossRefGoogle Scholar
  16. 16.
    Nunez, L., Senovilla, L., Sanz-Blasco, S., Chamero, P., Alonso, M. T., Villalobos, C., and Garcia-Sancho, J. (2007) Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons. J Physiol 580 , 385–395.PubMedCrossRefGoogle Scholar
  17. 17.
    Baubet, V., Le Mouellic, H., Campbell, A. K., Lucas-Meunier, E., Fossier, P., and Brulet, P. (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 97 , 7260–7265.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carlos Villalobos
    • 1
  • María Teresa Alonso
    • 1
  • Javier García-Sancho
    • 1
  1. 1.Instituto de Biología y Genética Molecular (IBGM)Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC)ValladolidSpain

Personalised recommendations