Noninvasive Bioluminescent Imaging of Infections

  • Javier S. Burgos
Part of the Methods in Molecular Biology™ book series (MIMB, volume 574)


Traditional studies of viral and bacterial infection and pathogenesis have generally relied on animal models that require the sacrifice of infected animals to determine viral or bacterial distributions and titers. The recent application of the in vivo bioluminescence imaging (BLI) to monitor the replication and tropism of pathogens expressing the luciferase (from firefly or Renilla) reporter proteins has been recently developed. This technology do not requires the sacrifice of the experimental animals, where the in vivo bioluminescence emissions in living animals permit the tracking of the infection. It has been demonstrated that the in vivo BLI is comparable to the classical approaches as measurements of in vitro light emission in organs of sacrificed animals. Moreover, molecular techniques such as PCR determinations show parallel results in pathogen quantification, where the concentrations of microbial DNA measured correlated with the magnitude of bioluminescence in vivo, and with the photon flux determined by the in vitro luciferase enzyme assay. These results show that BLI can be used for noninvasive, real-time monitoring of several infections of pathogens in living animals, supplying a new methodology in the study of pathogens in addition to conventional techniques for the characterization of infections.

Key words

Bioluminescence firefly luciferase Renilla luciferase infection pathogen region-of-interest imaging 



I thank Dr. David A. Leib for providing the KOS/Dlux/oriL HSV-1 and for his help.


  1. 1.
    Contag, C. H., Spilman, S. D., Contag, P. R., Oshiro, M., Eames, B., Dennery, P., Stevenson, D. K., and Benaron, D. A. (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66, 523–531.PubMedCrossRefGoogle Scholar
  2. 2.
    Wu, J. C., Sundaresan, G., Iyer, M., and Gambhir, S. S. (2001) Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 4, 297–306.PubMedCrossRefGoogle Scholar
  3. 3.
    Contag, C. H., and Bachmann, M. H. (2002) Advances in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4, 235–260.PubMedCrossRefGoogle Scholar
  4. 4.
    Contag, C. H., and Ross, B. D. (2002) It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16, 378–387.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhaumik, S., and Gambhir, S. S. (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99, 377–382.PubMedCrossRefGoogle Scholar
  6. 6.
    Summers, B. C., and Leib, D. A. (2002) Herpes simplex virus type 1 origins of DNA replication play no role in the regulation of flanking promoters. J Virol 76, 7020–7029.PubMedCrossRefGoogle Scholar
  7. 7.
    Luker, G. D., Bardill, J. P., Prior, J. L., Pica, C. M., Piwnica-Worms, D., and Leib, D. A. (2002) Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J Virol 76, 12149–12161.PubMedCrossRefGoogle Scholar
  8. 8.
    Luker, G. D., and Leib, D. A. (2005) Luciferase real-time bioluminescence imaging for the study of viral pathogenesis. Methods Mol Biol 292, 285–296.PubMedGoogle Scholar
  9. 9.
    Hutchens, M., and Luker, G. D. (2007) Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9, 2315–2322.PubMedCrossRefGoogle Scholar
  10. 10.
    Luker, G. D., Prior, J. L., Song, J., Pica, C. M., and Leib, D. A. (2003) Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors. J Virol 77, 11082–11093.PubMedCrossRefGoogle Scholar
  11. 11.
    Burgos, J. S., Guzman-Sanchez, F., Sastre, I., Fillat, C., and Valdivieso, F. (2006) Non-invasive bioluminescence imaging for monitoring herpes simplex virus type 1 hematogenous infection. Microbes Infect 8, 1330–1338.PubMedCrossRefGoogle Scholar
  12. 12.
    Burns-Guydish, S. M., Olomu, I. N., Zhao, H., Wong, R. J., Stevenson, D. K., and Contag, C. H. (2005) Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model. Pediatr Res 58, 153–158.PubMedCrossRefGoogle Scholar
  13. 13.
    Burgos, J. S., Rosol, M., Moats, R. A., Khankaldyyan, V., Kohn, D. B., Nelson, M. D., Jr., and Laug, W. E. (2003) Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques 34, 1184–1188.PubMedGoogle Scholar
  14. 14.
    Benaron, D. A., Contag, P. R., and Contag, C. H. (1997) Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond B Biol Sci 352, 755–761.PubMedCrossRefGoogle Scholar
  15. 15.
    Sadikot, R. T., Jansen, E. D., Blackwell, T. R., Zoia, O., Yull, F., Christman, J. W., and Blackwell, T. S. (2001) High-dose dexamethasone accentuates nuclear factor-kappa b activation in endotoxin-treated mice. Am J Respir Crit Care Med 164, 873–878.PubMedGoogle Scholar
  16. 16.
    Wilson, T., and Hastings, J. W. (1998) Bioluminescence. Annu Rev Cell Dev Biol 14, 197–230.PubMedCrossRefGoogle Scholar
  17. 17.
    Cook, S. H., and Griffin, D. E. (2003) Luciferase imaging of a neurotropic viral infection in intact animals. J Virol 77, 5333–5338.PubMedCrossRefGoogle Scholar
  18. 18.
    Hastings, J. W. (1996) Chemistries and colors of bioluminescent reactions: a review. Gene 173, 5–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Contag, P. R., Olomu, I. N., Stevenson, D. K., and Contag, C. H. (1998) Bioluminescent indicators in living mammals. Nat Med 4, 245–247.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Javier S. Burgos
    • 1
  1. 1.Drug Discovery Unit, Neuron BPhGranadaSpain

Personalised recommendations