Skip to main content

GPCR Signaling: Understanding the Pathway to Successful Drug Discovery

  • Protocol
  • First Online:
G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 552))

Summary

Modulators of G protein-coupled receptors (GPCRs) form a key area for the pharmaceutical industry, representing ˜27% of all Food and Drug Administration (FDA)-approved drugs. Consequently, there are a wide variety of in vitro plate-based screening technologies that enable the measurement of compound affinity, potency, and efficacy for almost every type of GPCR. However, to maximize success it is prudent to ensure that (i) the most suitable assay formats are identified, (ii) they are configured optimally to detect the desired compound activity, and (iii) that they form a basis for predicting clinical effects. To achieve this, an understanding of the pathways and mechanisms of receptor activation relevant to the disease mechanism, as well as the benefits and/or limitations of the specific techniques, is key.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langley, J.N. (1906) On nerve endings and on special excitable substances in cells. Proc. Roy. Soc. B78, 170–194.

    Google Scholar 

  2. Ehrlich, P. (1913) Chemotherapeutics: scientific principles, methods and results. Lancet 2, 445–451.

    Google Scholar 

  3. Overington, J.P., Al-Lazikani, B., and Hopkins, A.L. (2006) How many drug targets are there? Nat. Rev. Drug. Discov. 5, 993–996.

    Article  PubMed  CAS  Google Scholar 

  4. McLoughlin, D.J., Bertelli, F., and Williams, C. (2007) The A, B, C’s of G protein-coupled receptor pharmacology in assay development for HTS. Expert Opin. Drug Discov. 2, 1–17.

    Article  Google Scholar 

  5. Kenakin, T. (2004) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol. Pharmacol. 65, 2–11.

    Article  PubMed  CAS  Google Scholar 

  6. Christopolous, A. (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 1, 198–210.

    Article  Google Scholar 

  7. Hill, S.J. (2006) G protein-coupled receptors: past, present and future. Br. J. Pharmacol. 147, S27–S37.

    Article  PubMed  CAS  Google Scholar 

  8. Schulte, G., and Levy, F.O. (2007) Novel aspects of G protein-coupled receptor signalling – different ways to achieve specificity. Acta Physiol. 190, 33–38.

    Article  CAS  Google Scholar 

  9. Leifert, W.R., Aloia, A.L., Bucco, O., and McMurchie, E.J. (2005) GPCR-induced dissociation of G protein subunits in early stage signal transduction. Mol. Memb. Biol. 22, 507–517.

    Article  CAS  Google Scholar 

  10. Cabera-Vera, T.M., Vanhauwe, J., Thomas, T.O., et al. (2003) Insights into G protein structure, function and regulation. Endocr. Rev. 24, 765–781.

    Article  Google Scholar 

  11. Hermans, E. (2003) Biochemical and pharmacological control of the multiplicity of coupling at G protein-coupled receptors. Pharmacol. Ther. 99, 24–44.

    Article  Google Scholar 

  12. Moore, C.A.C., Milano, S.K., and Benovic, J.L. (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu. Rev. Physiol. 69, 19.1–19.32.

    Article  Google Scholar 

  13. Lefkowitz, R.J. (1998) G protein-coupled receptors: III. New Roles for receptor kinases and β-arrestins in receptor signalling and desensitization. J. Biol. Chem. 273, 18677–18680.

    Article  PubMed  CAS  Google Scholar 

  14. Ferguson, S.S.G. (2007) Phosphorylation-independent attenuation of GPCR signalling. Trends Pharmacol. Sci. 28, 173–179.

    Article  PubMed  CAS  Google Scholar 

  15. Barak, L.S., Wilbanks, A.M., and Caron, M.G. Constitutive desensitization: a new paradigm for G protein-coupled receptor regulation. Assay Drug Dev. Tech. (2003) 1(2), 339–346.

    Article  CAS  Google Scholar 

  16. Seta, K., Nanamori, M., Modrall, J.G., Neubig, R.R., and Sadoshima J (2002) AT1 receptor mutant lacking heterotrimeric G protein coupling activates the Src-Ras-ERK pathway without nuclear translocation of ERKs. J. Biol. Chem. 277, 9268–9277.

    Article  PubMed  CAS  Google Scholar 

  17. Luttrell, L.M., Roudabush, F.L., Choy, E.W., Miller, W.E., Field, M.E., Pierce, K., and Lefkowitz, R.J. (2001) Activation and targetting of extracellular-signal-regulated kinases by β-arrestin scaffolds. Proc. Natl. Acad. Sci. USA 98, 2449–2454.

    Article  PubMed  CAS  Google Scholar 

  18. Wei, H., Ahn, S., Shenoy, S.K., Karnik, S.S., Hunyadi, L., Luttrell, L.M., and Lefkowitz, R.J. (2003) Independent β-arrestin-2 and G protein-mediated pathways for angiotensin II activation of extracellular signal regulated kinases 1 and 2. Proc. Natl. Acad. Sci. USA 100, 10782–10787.

    Article  PubMed  CAS  Google Scholar 

  19. Azzi, M., Charest, P.G., Angers, S., Rousseau, G., Kahout, T., Bouvier, M., and Pineyro, G. (2003) Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 100, 11406–11411.

    Article  PubMed  CAS  Google Scholar 

  20. Baker, J.G., Hall, I.P., and Hill, S.J. (2003) Agonist and inverse agonist actions of β-blockers at the human β2-adrenoceptor provide evidence for agonist-directed signalling. Mol. Pharmacol. 63, 1357–1369.

    Article  Google Scholar 

  21. Gesty-Palmer, D., Chen, M., Reiter, E., Ahn, S., Nelson, C.D., Wang, S., Eckhardt, A.E., Cowan, C.L., Spurney, R.F., Luttrell, L.M., and Lefkowitz, R.J. (2006) Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J. Biol. Chem. 281, 10856–10864.

    Article  PubMed  CAS  Google Scholar 

  22. Wisler, J.W., DeWire, S.M., Whalen, E.J., Wiolin, J.D., Drake, M.T., Ahn, S., Shenoy, S.K., and Lefkowitz, R.J. (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signalling. Proc. Natl. Acad. Sci. USA 104, 16657–16662.

    Article  PubMed  CAS  Google Scholar 

  23. Duncan, R.S., Sung-Yong, H., and Koulen, P. (2005) Effects of Vesl/Homer proteins on intracellular signalling. Exp. Biol. Med. 230, 527–535.

    CAS  Google Scholar 

  24. Gines, S., Ciruela, F., Burgueno, J., Casado, V., Canela, E.I., Mallol, J., Lluis, C., and Franco, R. (2001) Involvement of caveolin in ligand-induced recruitment and internalization of A1 adenosine receptor and adenosine deaminase in an epithelial cell line. Mol. Pharmacol. 59, 1314–1323.

    PubMed  CAS  Google Scholar 

  25. Fraser, J.D., Cong, M., Kim, J., Rollins, E.N., Daaka, Y., Lefkowitz, R.J., and Scott, J.D. (2000) Assembly of an A kinase-anchoring protein-β2-adrenergic receptor complex facilitates receptor phosphorylation and signalling. Curr. Biol. 10, 409–412.

    Article  PubMed  CAS  Google Scholar 

  26. Ostrom, R.S., and Insel, P.A. (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signalling: implications for molecular pharmacology. Br. J. Pharmacol. 143, 235–245.

    Article  PubMed  CAS  Google Scholar 

  27. Hall, R.A., Premont, R.T., Chow, C.W., Blitzer, J.T., Pitcher, J.A., Claing, A., Stoffel, R.H., Barak, L.S., Shenolikar, S., Weinman, E.J., Grinstein, S., and Lefowitz, R.J. (1998). The β2-adrenergic receptor interacts with the Na+/H+ exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630.

    Article  PubMed  CAS  Google Scholar 

  28. Galendrin, S., and Bouvier, M. (2006) Distinct signalling profiles of the β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pleuridimensionality of efficacy. Mol. Pharmacol. 70, 1575–1584.

    Article  Google Scholar 

  29. Baker, J.G., Hall, I.P., and Hill, S.J. (2003) Influence of agonist efficacy and receptor phosphorylation on antagonist affinity measurements: differences between second messenger and reporter gene responses. Mol. Pharmacol. 64, 679–688.

    Article  PubMed  CAS  Google Scholar 

  30. Baker, J.G., and Hill, S.J. (2007) Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates. Trends Pharmacol. Sci. 28, 374–381.

    Article  PubMed  CAS  Google Scholar 

  31. Thomsen, W., Frazer, J., and Unett, D. (2005) Functional assays for screening GPCR targets. Curr. Opin. Biotechnol. 16, 655–665.

    PubMed  CAS  Google Scholar 

  32. Maruyama, M.R., Bornheimer, S.J., Venkatasubramanian, V., and Subramaniam, S. (2005) Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module. Syst. Biol. 152, 229–242.

    Article  Google Scholar 

  33. Zhang, Y., and Rundell, A. (2006) Comparative study of parameter sensitivity analyses of the TCR-activated ERK-MAPK signalling pathway. Syst. Biol. 153, 201–211.

    Article  CAS  Google Scholar 

  34. Zolg, J.W., and Langen, H. (2004) How industry is approaching the search for new diagnostic markers and biomarkers. Mol. Cell. Proteomics 3, 345–354.

    Article  PubMed  CAS  Google Scholar 

  35. Penny, M.A., and McHale, D. (2005) Pharmacogenomics and the drug discovery pipeline: when should it be implemented? Am. J. Pharmacogenomics 5, 53–62.

    Article  PubMed  CAS  Google Scholar 

  36. Johnson, J.A., and Lima, J.J. (2003) Drug receptor/effector polymorphisms and pharmacogenetics: current status and challenges. Pharmacogenetics 13, 525–534.

    Article  PubMed  Google Scholar 

  37. Goetz, A.S., et al. (1999) A combination assay for simultaneous assessment of multiple signalling pathways. J. Pharmacol. Toxicol.Methods 42(4), 225–235.

    Article  PubMed  CAS  Google Scholar 

  38. Fang, Y., and Ferrie, A.M. (2008) Label-free optical biosensor for ligand-directed functional selectivity acting on beta(2) adrenoceptor in living cells. FEBS Lett. 582, 558–564.

    Article  PubMed  CAS  Google Scholar 

  39. Kostenis, E. (2006) G proteins in drug screening: from analysis of receptor-G protein specificity to manipulation of GPCR-mediated signalling pathways. Curr. Pharm. Des. 12, 1703–1715.

    Article  PubMed  CAS  Google Scholar 

  40. Milligan, G., and Rees, S. (1999) Chimeric Gα proteins: their potential use in drug discovery. Trends Pharmacol. Sci. 20, 118-124.

    Article  PubMed  CAS  Google Scholar 

  41. Gbahou, F. Rouleau, A., Morisset, S., et al. (2003) Protean agonism at histamine H3 receptors in vitro and in vivo. Proc. Natl. Acad. Sci. USA 100, 11086–11091.

    Article  PubMed  CAS  Google Scholar 

  42. Hancock, A.A. (2006) The challenge of drug discovery of a GPCR target: analaysis of preclinical pharmacology of histamine H3 antagonists/inverse agonists. Biochem. Pharmacol. 71, 1103–1113.

    Article  PubMed  CAS  Google Scholar 

  43. Williams, C. (2004) cAMP detection methods in HTS: selecting the best from the rest. Nat. Rev. Drug Discov. 3, 125–135.

    Article  PubMed  CAS  Google Scholar 

  44. George, S.E., Bungay, P.J., and Naylor, L.H. (1997) Evaluation of a CRE-directed luciferase reporter gene assay as an alternative to measuring cAMP accumulation. J. Biomol. Screen. 2, 235–240.

    Article  CAS  Google Scholar 

  45. Allen, M., Hall, D., Collins, B., and Moore, K. (2002) A homogeneous high throughput nonradioactive method for measurement of functional activity of Gs-coupled receptors in membranes. J. Biomol. Screen. 7, 35–44.

    Article  PubMed  CAS  Google Scholar 

  46. Leach, K., Sexton, P.M., and Christopoulos, A. (2007) Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28, 382–389.

    Article  PubMed  CAS  Google Scholar 

  47. Baker, J.G., Hall, I.P., and Hill, S.J. (2003) Agonist actions of “β-blockers” provide evidence for two agonist activation sites on the human β1-adrenoceptor. Mol. Pharmacol. 63, 1312–1321.

    Article  PubMed  CAS  Google Scholar 

  48. Berg, K.A., Maayani, S., Goldfarb, J., Scaramellini, C., Leff, P., and Clarke, W.P. (1998) Effect pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: Evidence for agonist-directed trafficking of receptor stimulus. Mol. Pharmacol. 54, 94–104.

    PubMed  CAS  Google Scholar 

  49. Makita, N., Sato, J., Manaka, K., Shoji, Y., Oishi, A., Hashimoto, M., Fujita, T., and Iira, T. (2007) An acquired hypocalcemia autoantibody induces allosteric transition among active Ca-sensing receptor conformations. Proc. Natl. Acad. Sci. USA 104, 5443–5448.

    Article  PubMed  CAS  Google Scholar 

  50. Williams, C., and Sewing, A. (2005) G protein-coupled receptor assays: to measure affinity or efficacy that is the question. Comb. Chem. High Throughput Screen. 8, 285–292.

    Article  PubMed  CAS  Google Scholar 

  51. Christopoulos, A., Parsons, A.M., Lew, M.J., and El-Fakahany, E.E. (1999) The assessment of antagonist potency under conditions of transient response kinetics. Eur. J. Pharmacol. 382, 217–227.

    Article  PubMed  CAS  Google Scholar 

  52. Sakamoto, A., Yanagisawa M., Tsujimoto G., Nakao K., Toyo-oka, T., and Masaki, T. (1994) Pseudo-noncompetitive antagonism by BQ123 of intracellular calcium transients mediated by human ETA endothelin receptor. Biochem. Biophys. Res. Comm. 200, 679–686.

    Article  PubMed  CAS  Google Scholar 

  53. Monaghan, M.L., Diver, T., Huffman, W.F., and Kinter, L.B. (1993) Antagonism of antidiuretic hormone in domestic pigs. Gen. Pharmacol. 24, 1013–1020.

    Article  PubMed  CAS  Google Scholar 

  54. Baker, J.G., Hall, I.P., and Hill, S.J. (2004) Temporal characteristics of CRE-mediated gene transcription: requirement for sustained cAMP production. Mol. Pharmacol. 65, 986–998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Williams, C., Hill, S.J. (2009). GPCR Signaling: Understanding the Pathway to Successful Drug Discovery. In: Leifert, W. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 552. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-317-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-317-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-316-9

  • Online ISBN: 978-1-60327-317-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics