Kinetic Analysis of the Inhibition of Matrix Metalloproteinases: Lessons from the Study of Tissue Inhibitors of Metalloproteinases

  • Frances Willenbrock
  • Daniel A. Thomas
  • Augustin Amour
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 622)

Abstract

Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and “tight-binding” nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.

Key words

Matrix metalloproteinases tissue inhibitors of metalloproteinases enzyme kinetics fluorescence resonance energy transfer 

References

  1. 1.
    Gomis-Rüth, F.-X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., Bourenkov, G. P., Bartunik, H., and Bode, W. (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Muskett, F. W., Frenkiel, T. A., Feeney, J., Freedman, R. B., Carr, M. D., and Williamson, R. A. (1998) High resolution structure of the N-terminal domain of tissue inhibitor of metalloproteinases-2 and characterization of its interaction site with matrix metalloproteinase-3. J Biol Chem 273, 21736–21743.PubMedCrossRefGoogle Scholar
  3. 3.
    Fernandez-Catalan, C., Bode, W., Huber, R., Turk, D., Calvete, J. J., Lichte, A., Tschesche, H., and Maskos, K. (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase a receptor. EMBO J 17, 5238–5248.PubMedCrossRefGoogle Scholar
  4. 4.
    Hutton, M., Willenbrock, F., Brocklehurst, K., and Murphy, G. (1998) Kinetic analysis of the mechanism of interaction of full length TIMP-2 and gelatinase A: evidence for the existence of a low affinity Intermediate. Biochemistry 37, 10094–10098.PubMedCrossRefGoogle Scholar
  5. 5.
    Murphy, G. and Willenbrock, F. (1995) Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol 248, 496–510.PubMedCrossRefGoogle Scholar
  6. 6.
    Stack, M. S. and Gray, R. D. (1989) Comparison of vertebrate collagenase and gelatinase using a new fluorogenic substrate peptide. J Biol Chem 264, 4277–4281.PubMedGoogle Scholar
  7. 7.
    Netzel-Arnett, S., Mallya, S. K., Nagase, H., Birkedal-Hansen, H., and Van Wart, H. E. (1991) Continuously recording fluorescent assays optimised for five human matrix metalloproteinases. Anal Biochem 195, 86–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Knight, C. G., Willenbrock, F., and Murphy, G. (1992) A novel coumarin-labeled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett 296, 263–266.PubMedCrossRefGoogle Scholar
  9. 9.
    Nagase, H., Fields, C. G., and Fields, G. B. (1994) Design and characterisation of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase- 3). J Biol Chem 269, 20952–20957.PubMedGoogle Scholar
  10. 10.
    Neumann, U., Kubota, H., Frei, K., Ganu, V., and Leppert, D. (2004) Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal Biochem 328, 166–173.PubMedCrossRefGoogle Scholar
  11. 11.
    Alvarez-Iglesias, M., Wayne, G., O‘Dea, K. P., Amour, A., and Takata, M. (2005) Continuous real-time measurement of tumor necrosis factor-alpha converting enzyme activity on live cells. Lab Invest 85, 1440–1448.PubMedCrossRefGoogle Scholar
  12. 12.
    Olson, M. W., Gervasi, D. C., Mobashery, S., and Fridman, R. (1997) Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem 272, 29975–29983.PubMedCrossRefGoogle Scholar
  13. 13.
    Willenbrock, F., Knight, C. G., Murphy, G., Phillips, I. R., and Brocklehurst, K. (1995) Evidence for the importance of weakly bound water for matrix metalloproteinase activity. Biochemistry 34, 12012–12018.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu, Y., Kati, W., Chen, C. M., Tripathi, R., Molla, A., and Kohlbrenner, W. (1999) Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction. Anal Biochem 267, 331–335.PubMedCrossRefGoogle Scholar
  15. 15.
    Weingarten, H. and Feder, J. (1985) Spectrophotometric assay for vertebrate collagenase. Anal Biochem 147, 437–440.PubMedCrossRefGoogle Scholar
  16. 16.
    Willenbrock, F. and Murphy, G. (1994) Structure-function relationships in the tissue inhibitors of metalloproteinases. Am J Respir Crit Care Med 150, S165–S170.PubMedGoogle Scholar
  17. 17.
    Leatherbarrow, R. J. (2003) Grafit version 5.0.8. Staines, UK: Erithacus Software Ltd.Google Scholar
  18. 18.
    Morrison, J. F. and Walsh, C. T. (1988) The behaviour and significance of slowbinding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol 61, 201–301.PubMedGoogle Scholar
  19. 19.
    O’Shea, M., Willenbrock, F., Williamson, R. A., Cockett, M. I., Freedman, R. B., Reynolds, J. J., Docherty, A. J. P., and Murphy, G. (1992) Site-directed mutations that alter the inhibitor activity of the tissue inhibitor of metalloproteinases-1: importance of the N-terminal region between cysteine 3 and cysteine 13. Biochemistry 31, 10,146–10,152.Google Scholar
  20. 20.
    Troeberg, L., Tanaka, M., Wait, R., Shi, Y. E., Brew, K., and Nagase, H. (2002) E. coli expression of TIMP-4 and comparative kinetic studies with TIMP-1 and TIMP-2: insights into the interactions of TIMPs and matrix metalloproteinase 2 (gelatinase A). Biochemistry 41, 15025–15035.PubMedCrossRefGoogle Scholar
  21. 21.
    Barshop, B. A., Wrenn, R. F., and Frieden, C. (1983) Analysis of numerical models for computer simulation of kinetic processes: development of KINSIM—a flexible, portable system. Anal Biochem 130, 134–145.PubMedCrossRefGoogle Scholar
  22. 22.
    Zimmerlle, C. T. and Frieden, C. (1989) Analysis of progress curves by simulations generated by numerical integration. Biochem J 258, 381–387.Google Scholar
  23. 23.
    Douglas, D. A., Shi, Y. E., and Sang, Q. X. A. (1997) Computational sequence analysis of the tissue inhibitor of metalloproteinase family. J Protein Chem 16, 237–255.PubMedCrossRefGoogle Scholar
  24. 24.
    Copeland, R. A. (2005) Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. New York: Wiley.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Frances Willenbrock
    • 1
  • Daniel A. Thomas
    • 2
  • Augustin Amour
    • 3
  1. 1.OrpingtonKentUK
  2. 2.GlaxoSmithKlineEssexUK
  3. 3.GlaxoSmithKlineHertfordshireUK

Personalised recommendations