Skip to main content

Studying Gene Induction of Glycopeptide Resistance Using Gene Swapping

  • Protocol
  • First Online:
Antibiotic Resistance Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 642))

Abstract

Gene swapping is a simple but effective genetic tool for characterizing the functioning of a gene, where the gene in question is known to fulfil a distinctive biological role in the cell. VanS is a sensor kinase which, in conjunction with its cognate response regulator VanR, triggers resistance to vancomycin. One of the most important questions yet to be answered in the study of vancomycin resistance is the nature of the specific ligand recognized by the VanS sensor. A “VanRS-swap” experiment between two glycopeptide-resistant Streptomyces species known to exhibit differing responses to inducer molecules can investigate whether inducer specificity is determined solely by differences between the amino acid sequences of the VanRS two-component systems present, or by inherent differences in cell wall structure and biosynthesis between the strains. Results from such experiments demonstrate that inducer specificity is determined by the origin of the VanRS proteins and provides useful circumstantial evidence that the VanS effector ligand is the drug itself, and not an intermediate in cell wall biosynthesis that may accumulate as a result of drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP et al (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347

    Article  PubMed  Google Scholar 

  2. Tenover FC, Weigel LM, Appelbaum PC, McDougal LK, Chaitram J, McAllister S et al (2004) Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother 48:275–280

    Article  CAS  PubMed  Google Scholar 

  3. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE et al (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 28:1569–1571

    Article  Google Scholar 

  4. Wright GD, Holman TR, Walsh CT (1993) Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32:5057–5063

    Article  CAS  PubMed  Google Scholar 

  5. Baptista M, Rodrigues P, Depardieu F, Courvaling P, Arthur M (1999) Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. Mol Microbiol 32:12–18

    Article  Google Scholar 

  6. Pearson H (2002) ‘Superbug’ hurdles key drug barrier. Nature 418:469–470

    Article  CAS  PubMed  Google Scholar 

  7. Serina S, Radice F, Maffioli S, Donadio S, Sosio M (2004) Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus. FEMS Microbiol Lett 240:69–74

    Article  CAS  PubMed  Google Scholar 

  8. Hong H-J, Hutchings MI, Neu JM, Wright GD, Paget MS, Buttner MJ (2004) Characterisation of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52:1107–1121

    Article  CAS  PubMed  Google Scholar 

  9. Hong H-J, Hutchings MI, Hill LM, Buttner MJ (2006) The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 280:13055–13061

    Article  Google Scholar 

  10. Hutchings MI, Hong H-J, Buttner MJ (2006) The vancomycin resistance VanS/VanR two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59:923–935

    Article  CAS  PubMed  Google Scholar 

  11. Pootoolal J, Thomas MG, Marshall CG, Neu JM, Hubbard BK, Walsh CT et al (2002) Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis. Proc Natl Acad Sci USA 99:8962–8967

    CAS  PubMed  Google Scholar 

  12. Gregory MA, Till R, Smith MCM (2003) Integration site for Streptomyces phage BT1 and development of site-specific integrating vectors. J Bacteriol 185:5320–5323

    Article  CAS  PubMed  Google Scholar 

  13. Casarin A, Jimenez-Ortega JC, Trevisson E, Pertegato V, Doimo M, Ferrero-Gomez ML et al (2008) Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis. Biochem Biophys Res Commun 372:35–39

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Zhang X, Liu J (2007) Identification of a ubiG-like gene involved in ubiquinone biosynthesis from Chlamydophila pneumoniae AR39. Lett Appl Microbiol 45:47–54

    Article  CAS  PubMed  Google Scholar 

  15. Martínez-Costa OH, Fernández-Moreno MA, Malpartida F (1998) The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities. J Bacteriol 180:4123–4132

    PubMed  Google Scholar 

  16. Lensbouer JJ, Patel A, Sirianni JP, Doyle RP (2008) Functional characterization and metal Ion specificity of the metal-citrate complex transporter from Streptomyces coelicolor. J Bacteriol 190:5616–5623

    Article  CAS  PubMed  Google Scholar 

  17. Letek M, Ordóñez E, Vaquera J, Margolin W, Flärdh K, Mateos LM et al (2008) DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol 190:3283–3292

    Article  CAS  PubMed  Google Scholar 

  18. Guzman LM, Weiss DS, Beckwith J (1997) Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli. J Bacteriol 179:5094–5103

    CAS  PubMed  Google Scholar 

  19. Paget MSB, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor, σE, is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author would like to thank Andrew Hesketh for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hong, HJ. (2010). Studying Gene Induction of Glycopeptide Resistance Using Gene Swapping. In: Gillespie, S., McHugh, T. (eds) Antibiotic Resistance Protocols. Methods in Molecular Biology, vol 642. Humana Press. https://doi.org/10.1007/978-1-60327-279-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-279-7_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-278-0

  • Online ISBN: 978-1-60327-279-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics