Skip to main content

Stability of Recombinant Proteins in Plants

  • Protocol
Recombinant Proteins from Plants

Part of the book series: Methods in Biotechnology ((MIBT,volume 3))

Abstract

In almost all living organisms, proteolytic enzymes are involved in a variety of cellular functions not only associated with the control of specific endogenous metabolic reactions, but also with the degradation of abnormal or exogenous (“foreign”) proteins (1). Despite the fundamental importance of proteases in cells, studies on these enzymes, for those involved in gene-expression technology, are devised to develop a means of avoiding or minimizing degradation of the recombinant proteins to be produced. Some proteins are rapidly degraded either during or shortly after their synthesis, and others are lost during their extraction from cells or tissues. Although general strategies have been proposed to minimize extraction-related hydrolytic processes in microbial, animal, and plant systems (2,3), in vivo proteolysis still represents one of the most significant barriers to recombinant gene expression in any organism (4). Some exo- and endoproteases from Escherichia coli (5) and yeast (6), notably, represent harmful molecules for recombinant (“abnormal”) proteins expressed in these systems, and strategies have been developed to counteract potential or actual hydrolytic processes (7,8). Concurrently, the posttranslational ubiquitination of foreign proteins recognized as abnormal in yeast and other eukaryotic cells may lead to their rapid degradation by the multicatalytic complex proteasome via the ubiquitin-mediated proteolysis pathway (9), rendering necessary the study of ubiquitin conjugates when planning to express recombinant proteins in the cytoplasm of yeast or animal cells (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolf, H. (1992) Proteases as biological regulators. Experientia 48, 117–118.

    Article  PubMed  CAS  Google Scholar 

  2. North, M. J. (1989) Prevention of unwanted proteolysis, in Proteolytic Enzymes∶ A Practical Approach (Beynon, R. J. and Bond, J. S., eds.), IRL, New York, pp. 105–124.

    Google Scholar 

  3. Michaud, D. and Asselin, A. (1995) Review. Application to plant proteins of gel electrophoretic methods. J. Chromatogr. A 698, 263–279.

    Article  CAS  Google Scholar 

  4. Emr, S. D. (1990) Heterologous gene expression in yeast. Methods Enzymol. 185, 231–233.

    Article  PubMed  CAS  Google Scholar 

  5. Maurizi, M. R. (1992) Proteases and protein degradation in Escherichia coli. Experientia 48, 178–201.

    Article  PubMed  CAS  Google Scholar 

  6. Jones, E. W. (1991) Minireview. Three proteolytic systems in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 266, 7963–7966.

    PubMed  CAS  Google Scholar 

  7. Jones, E. W. (1990) Vacuolar proteases in yeast Saccharomyces cerevisiae. Methods Enzymol 185, 372–386.

    Article  PubMed  CAS  Google Scholar 

  8. Gottesman, S. (1990) Minimizing proteolysis in Escherichia coli∶ genetic solutions. Methods Enzymol. 185, 119–129.

    Article  PubMed  CAS  Google Scholar 

  9. Ciechanover, A. (1994) Review. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21.

    Article  PubMed  CAS  Google Scholar 

  10. Wilkinson, K. D. (1990) Detection and inhibition of ubiquitin-dependent proteolysis. Methods Enzymol. 185, 387–397.

    Article  PubMed  CAS  Google Scholar 

  11. Chrispeels, M. J. and Raikhel, N. V. (1992) Minireview. Short peptide domains target proteins to plant vacuoles. Cell 68, 613–616.

    Article  PubMed  CAS  Google Scholar 

  12. Vierstra, R. D. (1993) Protein degradation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 385–410.

    Article  CAS  Google Scholar 

  13. Callis, J. (1995) Regulation of protein degradation. Plant Cell 7, 845–857.

    Article  PubMed  CAS  Google Scholar 

  14. Smith, B. J. (1984) SDS polyacrylamide gel electrophoresis of proteins, in Methods in Molecular Biology, vol. 1∶ Proteins (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 41–45.

    Google Scholar 

  15. Gooderham, K. (1984) Transfer techniques in protein blotting, in Methods in Molecular Biology, vol. 1∶ Proteins (Walker, J. M., ed.). Humana, Clifton, NJ, pp. 165–178.

    Google Scholar 

  16. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  17. Bjerrum, O. J. and Heegaard, N. H. H. (1988) Handbook of Immunoblotting of Proteins, vol. I. Technical Descriptions. CRC, Boca Raton.

    Google Scholar 

  18. Linderstrom-Lang, K. (1952) Lane Medical Lectures, vol. 6. Stanford University Press, Stanford, pp. 53–72.

    Google Scholar 

  19. Abe, K., Hiroto, K., and Arai, S. (1987) Purification and characterization of a rice cysteine proteinase inhibitor. Agric. Biol. Chem. 51, 2763–2765.

    CAS  Google Scholar 

  20. Liang, C., Brookhart, G., Feng, G. H., Reeck, G. R., and Kramer, K. J. (1991) Inhibition of digestive proteinase of stored grain Coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seeds. FEBS Lett. 278, 139–142.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, M.-S., Johnson, B., Wen, L., Muthukrishnan, S., Kramer, K. J., Morgan, T. D. and Reeck, G. R. (1992) Rice cystatin∶ bacterial expression, purification, cysteine proteinase inhibitory activity, and insect growth suppressing activity of a truncated form of the protein. Protein Expres. Purif. 3, 41–49.

    Article  CAS  Google Scholar 

  22. Bonadé-Bottino, M. (1993) Défense du colza contre les insectes phytophages déprédateurs∶ étude d’une stratégic basée sur l’expression d’inhibiteurs de protéases dans la plante. Ph.D. Thesis, Université de Paris-Sud, Centre d’Orsay.

    Google Scholar 

  23. Michaud, D., Nguyen-Quoc, B., and Yelle, S. (1993) Selective inactivation of Colorado potato beetle cathepsin H by oryzacystatins I and II. FEBS Lett. 331, 173–176.

    Article  PubMed  CAS  Google Scholar 

  24. Michaud, D., Bernier-Vadnais, N., Overney, S., and Yelle, S. (1995) Constitutive expression of digestive cysteine proteinase forms during development of the Colorado potato beetle, Leptinotarsa decemLineata Say (Coleoptera∶ Chrysomelidae). Insect Biochem. Mol. Biol. 25, 1041–1048.

    Article  CAS  Google Scholar 

  25. Leplé, J.-C., Bonade Bottino, M., Augustin, S., Delplanque, A., Dumanois, V., Pilate, G., Cornu, D., and Jouanin, L. (1995) Toxicity to Chrysomela tremulae (Coleoptera∶ Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol. Breed. 1, 319–328.

    Article  Google Scholar 

  26. Abe, K., Emori, Y., Kondo, H., Arai, S., and Suzuki, K. (1988) The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of the cystatin superfamily. Expression of oryzacystatin cDNA and its truncated fragments in Escherichia coli. J. Biol. Chem. 263, 7655–7659.

    CAS  Google Scholar 

  27. Michaud, D., Nguyen-Quoc, B., and Yelle, S. (1994) Production of oryzacystatins I and II in Escherichia coli using the glutathione S-transferase gene fusion system. Biotechnol. Prog. 10, 155–159.

    Article  CAS  Google Scholar 

  28. Bachmair, A., Finley, D., and Varshavsky, A. (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186.

    Article  PubMed  CAS  Google Scholar 

  29. Storey, R.D. (1986) Plant endopeptidases, in Plant Proteolytic Enzymes (Dalling, M., ed.), CRC, Boca Raton, pp. 119–135.

    Google Scholar 

  30. Canut, H., Dupré, M., Carrasco, A., and Boudet, A. M. (1987) Proteases of Melilotus alba mesophyll protoplasts. Planta 170, 541–549.

    Article  CAS  Google Scholar 

  31. Chrispeels, M. J. (1991) Sorting of proteins in the secretory system. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 21–53.

    Article  CAS  Google Scholar 

  32. Bednarek, S. Y., Wilkins, T. A., Dombrowski, J. E., and Raikhel, N. V. (1990) A carboxy-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2, 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  33. Wilkins, T. A., Bednarek, S. Y., and Raikhel, N. V. (1990) Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell 2, 301–313.

    Article  PubMed  CAS  Google Scholar 

  34. Neuhaus, J.-M., Sticher, L., Meins, F., Jr., and Boiler, T. (1991) A short C-terminal sequence is necessary and sufficient for the targeting of chitinase to the plant vacuole. Proc. Natl. Acad. Sci. USA 88, 10362–10366.

    Article  PubMed  CAS  Google Scholar 

  35. Wandelt, C. I., Khan, M. R. I., Craig, S., Schroeder, H. E., Spencer, D., and Higgins, T. J. V. (1992) Vicilin with carboxy-terminal KDEL is retained in the endoplasmic-reticulum and accumulates to high-levels in the leaves of transgenic plants. Plant J. 2, 181–192.

    PubMed  CAS  Google Scholar 

  36. Denecke, J., Goldman, M. H. S., Demolder, J., Seurinck, J. and Bottermann, J. (1991) The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 3, 1025–1035.

    Article  PubMed  CAS  Google Scholar 

  37. Herman, E. M., Tague, B. W., Hoffman, L. M., Kjemtrup, S. E., and Chrispeels, M. J. (1990) Retention of phytohemagglutinin with carboxyterminal tetrapeptide KDEL in the nuclear envelope and the endoplasmic reticulum. Planta 182, 305–312.

    Article  CAS  Google Scholar 

  38. Matsuoka, M. and Nakamura, K. (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc. Natl. Acad. Sci. USA 88, 834–838.

    Article  PubMed  CAS  Google Scholar 

  39. Holwerda, B. C., Galvin, N. J., Baranski, T. J., and Rogers, J. C. (1990) In vitro processing of aleurain, a barley vacuolar thiol protease. Plant Cell 2, 1091–1106.

    Article  PubMed  CAS  Google Scholar 

  40. Denecke, J., Botterman, J., and Deblaere, R. (1990) Protein secretion in plant cells can occur via a default pathway. Plant Cell 2, 51–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Michaud, D., Vrain, T.C., Gomord, V., Faye, L. (1998). Stability of Recombinant Proteins in Plants. In: Cunningham, C., Porter, A.J.R. (eds) Recombinant Proteins from Plants. Methods in Biotechnology, vol 3. Humana Press. https://doi.org/10.1007/978-1-60327-260-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-260-5_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-390-0

  • Online ISBN: 978-1-60327-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics