Advertisement

High-Throughput Screening of the Cyclic AMP-Dependent Protein Kinase (PKA) Using the Caliper Microfluidic Platform

  • Leonard J. Blackwell
  • Steve Birkos
  • Rhonda Hallam
  • Gretchen Van De Carr
  • Jamie Arroway
  • Carla M. Suto
  • William P. Janzen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 565)

Abstract

Inhibitors of kinase activities can be mechanistically diverse, genomically selective, and pathway sensitive. This potential has made these biological targets the focus of a number of drug discovery and development programs in the pharmaceutical industry. To this end, the high-throughput screening of kinase targets against diverse chemical libraries or focused compound collections is at the forefront of the drug discovery process. Thus, the platform technology used to screen such libraries must be flexible and produce reliable and comparable data. The Caliper HTS microfluidic platform provides a direct determination of a peptidic substrate and phosphorylated product through the electrophoretic separation of the two species. The resulting data are reliable and comparable among screens and cover a broad range of biological targets, provided there is a definable peptide substrate that permits separation. Here we present a method for the high-throughput screening of the cyclic AMP-dependent protein kinase (PKA) as an example of the simplicity of this microfluidic platform.

Key words

Microfluidics Kinase PKA High-throughput screening HTS Caliper 

References

  1. 1.
    O'Neill, L.A. (2006) Targeting signal transduction as a strategy to treat inflammatory diseases. Nat. Rev. Drug Discov. 5(7), 549–563.CrossRefGoogle Scholar
  2. 2.
    Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y., Mills, G.B. (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4(12), 988–1004.CrossRefGoogle Scholar
  3. 3.
    Vlahos, C.J., McDowell, S.A., Clerk, A. (2003) Kinases as therapeutic targets for heart failure. Nat. Rev. Drug Discov. 2(2), 99–113.CrossRefGoogle Scholar
  4. 4.
    Druker, B.J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G.M., Fanning, S., Zimmermann, J., Lydon, N.B. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med. 2(5), 561–566.CrossRefGoogle Scholar
  5. 5.
    Warner, G., Illy, C., Pedro, L., Roby, P., Bosse, R. (2004) AlphaScreen kinase HTS platforms. Curr. Med. Chem. 11(6), 721–730.CrossRefGoogle Scholar
  6. 6.
    Sportsman, J.R., Gaudet, E.A., Boge, A. (2004) Immobilized metal ion affinity-based fluorescence polarization (IMAP): advances in kinase screening. Assay Drug Dev. Technol. 2(2), 205–214.CrossRefGoogle Scholar
  7. 7.
    Koresawa, M., Okabe, T. (2004) High-throughput screening with quantitation of ATP consumption: a universal non-radioisotope, homogeneous assay for protein kinase. Assay Drug Dev. Technol. 2(2), 153–160.CrossRefGoogle Scholar
  8. 8.
    Dunne, J., Reardon, H., Trinh, V., Li, E., Farinas, J. (2004) Comparison of on-chip and off-chip microfluidic kinase assay formats. Assay Drug Dev. Technol. 2(2), 121–129.CrossRefGoogle Scholar
  9. 9.
    Cheng, H.C., Kemp, B.E., Pearson, R.B., Smith, A.J., Misconi, L., Van Patten, S.M., Walsh, D.A. (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J. Biol. Chem. 261(3), 989–992.Google Scholar
  10. 10.
    Janzen, W., Bernasconi, P., Cheatham, L., Mansky, P., Popa-Burke, I., Williams, K., Worley, J., Hodge, N. (2004) Optimizing the Chemical Genomics Process. In: Darvas, F., Guttman, A., and Dorman, G. (eds.), Chemical Genomics. Marcel Dekker, New York, pp. 59–100.Google Scholar
  11. 11.
    Zhang, J.H., Chung, T.D., Oldenburg, K.R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Leonard J. Blackwell
    • 1
  • Steve Birkos
    • 2
  • Rhonda Hallam
    • 3
  • Gretchen Van De Carr
    • 2
  • Jamie Arroway
    • 3
  • Carla M. Suto
    • 3
  • William P. Janzen
    • 4
  1. 1.Wyeth PharmaceuticalsSanfordUSA
  2. 2.NanosynDurhamUSA
  3. 3.GlaxoSmithKlineCollegevilleUSA
  4. 4.Assay Development and Compound Profiling, Division of Medicinal Chemistry and Natural Products, Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of PharmacyUniversity of North CarolinaChapel HillUSA

Personalised recommendations