Skip to main content

Solution-State Nuclear Magnetic Resonance Spectroscopy and Protein Folding

  • Protocol
  • First Online:
Protein Folding, Misfolding, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 752))

Abstract

A protein undergoes a variety of structural changes during its folding and misfolding and a knowledge of its behaviour is key to understanding the molecular details of these events. Solution-state NMR spectroscopy is unique in that it can provide both structural and dynamical information at both high-resolution and at a residue-specific level, and is particularly useful in the study of dynamic systems. In this chapter, we describe NMR strategies and how they are applied in the study of protein folding and misfolding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yamazaki, T., R. Muhandiram, and L.E. Kay. (1994) NMR experiments for the measurement of carbon relaxation properties in highly enriched, uniformly 13C, 15N-labeled proteins: application to 13C alpha carbons. J Am Chem Soc. 116, 8266–8278.

    Article  CAS  Google Scholar 

  2. Markus, M.A., K.T. Dayie, P. Matsudaira, and G. Wagner. (1994) Effect of deuteration on the amide proton relaxation rates in proteins. Heteronuclear NMR experiments on villin 14T. J Magn Reson B. 105, 192–195.

    Article  PubMed  CAS  Google Scholar 

  3. Kobayashi, M., H. Yagi, T. Yamazaki, M. Yoshida, and H. Akutsu. (2008) Dynamic inter-subunit interactions in thermophilic F(1)-ATPase subcomplexes studied by cross-correlated relaxation-enhanced polarization transfer NMR. J Biomol NMR. 40, 165–74.

    Article  PubMed  CAS  Google Scholar 

  4. Mittermaier, A. and L.E. Kay. (2002) Effect of deuteration on some structural parameters of methyl groups in proteins as evaluated by residual dipolar couplings. J Biomol NMR. 23, 35–45.

    Article  PubMed  CAS  Google Scholar 

  5. Vasos, P.R., J.B. Hall, R. Kummerle, and D. Fushman. (2006) Measurement of 15N relaxation in deuterated amide groups in proteins using direct nitrogen detection. J Biomol NMR. 36, 27–36.

    Article  PubMed  CAS  Google Scholar 

  6. LeMaster, D.M. (1990) Uniform and selective deuteration in two-dimensional NMR of proteins. Annu Rev Biophys Biophys Chem. 19, 243–66.

    Article  PubMed  CAS  Google Scholar 

  7. Hwang, K.J., F. Mahmoodian, J.A. Ferretti, E.D. Korn, and J.M. Gruschus. (2007) Intramolecular interaction in the tail of Acanthamoeba myosin IC between the SH3 domain and a putative pleckstrin homology domain. Proc Natl Acad Sci U S A. 104, 784–9.

    Article  PubMed  CAS  Google Scholar 

  8. Fiaux, J., E.B. Bertelsen, A.L. Horwich, and K. Wüthrich. (2002) NMR analysis of a 900K GroEL GroES complex. Nature. 418, 207–11.

    Article  PubMed  CAS  Google Scholar 

  9. Sprangers, R. and L.E. Kay. (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature. 445, 618–22.

    Article  PubMed  CAS  Google Scholar 

  10. Sprangers, R., A. Gribun, P.M. Hwang, W.A. Houry, and L.E. Kay. (2005) Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci U S A. 102, 16678–83.

    Article  PubMed  CAS  Google Scholar 

  11. Artero, J.B., M. Hartlein, S. McSweeney, and P. Timmins. (2005) A comparison of refined X-ray structures of hydrogenated and perdeuterated rat gammaE-crystallin in H2O and D2O. Acta Crystallogr D Biol Crystallogr. 61, 1541–9.

    Article  PubMed  Google Scholar 

  12. Tugarinov, V., V. Kanelis, and L.E. Kay. (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc. 1, 749–54.

    Article  PubMed  CAS  Google Scholar 

  13. McIntosh, L.P. and F.W. Dahlquist. (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys. 23, 1–38.

    Article  PubMed  CAS  Google Scholar 

  14. Whittaker, J.W. (2007) Selective isotopic labeling of recombinant proteins using amino acid auxotroph strains. Methods Mol Biol. 389, 175–88.

    Article  PubMed  CAS  Google Scholar 

  15. Cavanagh, J., Protein NMR spectroscopy: principles and practice. 2nd ed. 2007: Academic Press.

    Google Scholar 

  16. Radford, S.E., C.M. Dobson, and P.A. Evans. (1992) The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature. 358, 302–7.

    Article  PubMed  CAS  Google Scholar 

  17. Miranker, A., S.E. Radford, M. Karplus, and C.M. Dobson. (1991) Demonstration by NMR of folding domains in lysozyme. Nature. 349, 633–6.

    Article  PubMed  CAS  Google Scholar 

  18. Redfield, C., R.A. Smith, and C.M. Dobson. (1994) Structural characterization of a highly-ordered “molten globule” at low pH. Nat Struct Biol. 1, 23–9.

    Article  PubMed  CAS  Google Scholar 

  19. Wijesinha-Bettoni, R., C.M. Dobson, and C. Redfield. (2001) Comparison of the denaturant-induced unfolding of the bovine and human alpha-lactalbumin molten globules. J Mol Biol. 312, 261–73.

    Article  PubMed  CAS  Google Scholar 

  20. Schanda, P., E. Kupce, and B. Brutscher. (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR. 33, 199–211.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu, S.T., P. Fucini, L.D. Cabrita, H. Launay, C.M. Dobson, and J. Christodoulou. (2007) Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc Natl Acad Sci U S A. 104, 16516–21.

    Article  PubMed  CAS  Google Scholar 

  22. Cabrita, L.D., S.T. Hsu, H. Launay, C.M. Dobson, and J. Christodoulou. (2009) Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. Proc Natl Acad Sci U S A. 106, 22239–22244.

    Article  PubMed  CAS  Google Scholar 

  23. Pervushin, K., R. Riek, G. Wider, and K. Wuthrich. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 94, 12366–71.

    Article  PubMed  CAS  Google Scholar 

  24. Fernandez, C. and G. Wider. (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol. 13, 570–80.

    Article  PubMed  CAS  Google Scholar 

  25. Croke, R.L., C.O. Sallum, E. Watson, E.D. Watt, and A.T. Alexandrescu. (2008) Hydrogen exchange of monomeric alpha-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli. Protein Sci. 17, 1434–45.

    Article  PubMed  CAS  Google Scholar 

  26. Eliezer, D., E. Kutluay, R. Bussell, Jr., and G. Browne. (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol. 307, 1061–73.

    Article  PubMed  CAS  Google Scholar 

  27. Macao, B., W. Hoyer, A. Sandberg, A.C. Brorsson, C.M. Dobson, and T. Hard. (2008) Recombinant amyloid beta-peptide production by coexpression with an affibody ligand. BMC Biotechnol. 8, 82.

    Article  PubMed  Google Scholar 

  28. Song, J., L.W. Guo, H. Muradov, N.O. Artemyev, A.E. Ruoho, and J.L. Markley. (2008) Intrinsically disordered gamma-subunit of cGMP phosphodiesterase encodes functionally relevant transient secondary and tertiary structure. Proc Natl Acad Sci U S A. 105, 1505–10.

    Article  PubMed  CAS  Google Scholar 

  29. Hayes, P.L., B.L. Lytle, B.F. Volkman, and F.C. Peterson. (2008) The solution structure of ZNF593 from Homo sapiens reveals a zinc finger in a predominantly unstructured protein. Protein Sci. 17, 571–6.

    Article  PubMed  CAS  Google Scholar 

  30. Reingewertz, T.H., H. Benyamini, M. Lebendiker, D.E. Shalev, and A. Friedler. (2009) The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Protein Eng Des Sel. 22, 281–7.

    Article  PubMed  CAS  Google Scholar 

  31. Bermel, W., I. Bertini, I.C. Felli, M. Piccioli, and R. Pierattelli. (2005) 13C-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Magn Res Sp. 48, 25–45.

    Article  Google Scholar 

  32. Arai, M. and K. Kuwajima. (2000) Role of the molten globule state in protein folding. Adv Protein Chem. 53, 209–82.

    Article  PubMed  CAS  Google Scholar 

  33. Ptitsyn, O.B. (1995) Molten globule and protein folding. Adv Protein Chem. 47, 83–229.

    Article  PubMed  CAS  Google Scholar 

  34. Korzhnev, D.M., X. Salvatella, M. Vendruscolo, A.A. Di Nardo, A.R. Davidson, C.M. Dobson, and L.E. Kay. (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature. 430, 586–590.

    Article  PubMed  CAS  Google Scholar 

  35. Hsu, S.-T.D., L.D. Cabrita, P. Fucini, C.M. Dobson, and J. Christodoulou. (2009) Structure, dynamics and folding of an immunoglobulin domain of the gelation factor (ABP-120) from Dictyostelium discoideum. J Mol Biol. 388, 865–79.

    Article  PubMed  CAS  Google Scholar 

  36. Garcia, P., L. Serrano, M. Rico, and M. Bruix. (2002) An NMR view of the folding process of a CheY mutant at the residue level. Structure. 10, 1173–1185.

    Article  PubMed  CAS  Google Scholar 

  37. Redfield, C. (2004) Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins. Methods. 34, 121–32.

    Article  PubMed  CAS  Google Scholar 

  38. Quezada, C.M., B.A. Schulman, J.J. Froggatt, C.M. Dobson, and C. Redfield. (2004) Local and global cooperativity in the human alpha-lactalbumin molten globule. J Mol Biol. 338, 149–58.

    Article  PubMed  CAS  Google Scholar 

  39. Schulman, B.A., P.S. Kim, C.M. Dobson, and C. Redfield. (1997) A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol. 4, 630–4.

    Article  PubMed  CAS  Google Scholar 

  40. Uzawa, T., C. Nishimura, S. Akiyama, K. Ishimori, S. Takahashi, H.J. Dyson, and P.E. Wright. (2008) Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proc Natl Acad Sci U S A. 105, 13859–64.

    Article  PubMed  CAS  Google Scholar 

  41. Hughson, F.M., P.E. Wright, and R.L. Baldwin. (1990) Structural characterization of a partly folded apomyoglobin intermediate. Science. 249, 1544–8.

    Article  PubMed  CAS  Google Scholar 

  42. van Mierlo, C.P., J.M. van den Oever, and E. Steensma. (2000) Apoflavodoxin (un)folding followed at the residue level by NMR. Protein Sci. 9, 145–57.

    Article  PubMed  Google Scholar 

  43. Jarymowycz, V.A. and M.J. Stone. (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev. 106, 1624–71.

    Article  PubMed  CAS  Google Scholar 

  44. Neudecker, P., P. Lundstrom, and L.E. Kay. (2009) Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophys J. 96, 2045–54.

    Article  PubMed  CAS  Google Scholar 

  45. Hansen, D.F., P. Vallurupalli, P. Lundstrom, P. Neudecker, and L.E. Kay. (2008) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc. 130, 2667–75.

    Article  PubMed  CAS  Google Scholar 

  46. Neudecker, P., A. Zarrine-Afsar, A.R. Davidson, and L.E. Kay. (2007) Phi-value analysis of a three-state protein folding pathway by NMR relaxation dispersion spectroscopy. Proc Natl Acad Sci U S A. 104, 15717–22.

    Article  PubMed  CAS  Google Scholar 

  47. Sugase, K., H.J. Dyson, and P.E. Wright. (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature.

    Google Scholar 

  48. Cavalli, A., X. Salvatella, C.M. Dobson, and M. Vendruscolo. (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci U S A. 104, 9615–20.

    Article  PubMed  CAS  Google Scholar 

  49. Shen, Y., O. Lange, F. Delaglio, P. Rossi, J.M. Aramini, G. Liu, A. Eletsky, Y. Wu, K.K. Singarapu, A. Lemak, A. Ignatchenko, C.H. Arrowsmith, T. Szyperski, G.T. Montelione, D. Baker, and A. Bax. (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A. 105, 4685–90.

    Article  PubMed  CAS  Google Scholar 

  50. Vallurupalli, P., D.F. Hansen, E. Stollar, E. Meirovitch, and L.E. Kay. (2007) Measurement of bond vector orientations in invisible excited states of proteins. Proc Natl Acad Sci U S A. 104, 18473–7.

    Article  PubMed  CAS  Google Scholar 

  51. Price, W.S., A.V. Barzykin, K. Hayamizu, and M. Tachiya. (1998) A model for diffusive transport through a spherical interface probed by pulsed-field gradient NMR. Biophys J. 74, 2259–71.

    Article  PubMed  CAS  Google Scholar 

  52. Stejskal, E.O. and J.E. Tanner. (1965) Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292.

    Article  CAS  Google Scholar 

  53. Palmer, A.G., 3rd. (1997) Probing molecular motion by NMR. Curr Opin Struct Biol. 7, 732–7.

    Article  PubMed  CAS  Google Scholar 

  54. Wilkins, D.K., S.B. Grimshaw, V. Receveur, C.M. Dobson, J.A. Jones, and L.J. Smith. (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry. 38, 16424–16431.

    Article  PubMed  CAS  Google Scholar 

  55. Dehner, A. and H. Kessler. (2005) Diffusion NMR spectroscopy: folding and aggregation of domains in p53. Chembiochem. 6, 1550–65.

    Article  PubMed  CAS  Google Scholar 

  56. Dawson, R., L. Muller, A. Dehner, C. Klein, H. Kessler, and J. Buchner. (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol. 332, 1131–41.

    Article  PubMed  CAS  Google Scholar 

  57. Baldwin, A.J., J. Christodoulou, P.D. Barker, C.M. Dobson, and G. Lippens. (2007) Contribution of rotational diffusion to pulsed field gradient diffusion measurements. J Chem Phys. 127, 114505.

    Article  PubMed  Google Scholar 

  58. Waudby, C.A., T.P. Knowles, G.L. Devlin, J.N. Skepper, H. Ecroyd, J.A. Carver, M.E. Welland, J. Christodoulou, C.M. Dobson, and S. Meehan. (2010) The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J. 98, 843–51.

    Article  PubMed  CAS  Google Scholar 

  59. Berger, S. and S. Braun, 200 and more NMR experiments: A practical course. 3rd ed. 2004: Wiley-VCH.

    Google Scholar 

  60. Linderstrom-Lang, K., ed. Deuterium exchange and protein structure. Symposium on protein structure, ed. A. Neuberger. 1958, Methuen: London

    Google Scholar 

  61. Dempsey, C. (2001) Hydrogen exchange in peptides and proteins using NMR spectroscopy. Prog Nucl Magn Res Sp 39, 135–170.

    Article  CAS  Google Scholar 

  62. Bai, Y., J.S. Milne, L. Mayne, and S.W. Englander. (1993) Primary structure effects on peptide group hydrogen exchange. Proteins. 17, 75–86.

    Article  PubMed  CAS  Google Scholar 

  63. Connelly, G.P., Y. Bai, M.F. Jeng, and S.W. Englander. (1993) Isotope effects in peptide group hydrogen exchange. Proteins. 17, 87–92.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang, Y. A server program for hydrogen exchange rate estimation (http://www.fccc.edu/research/labs/roder/sphere/sphere.html).

  65. Englander, S.W., T.R. Sosnick, J.J. Englander, and L. Mayne. (1996) Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol. 6, 18–23.

    Article  PubMed  CAS  Google Scholar 

  66. Huang, J.R., T.D. Craggs, J. Christodoulou, and S.E. Jackson. (2007) Stable intermediate states and high energy barriers in the unfolding of GFP. J Mol Biol. 370, 356–71.

    Article  PubMed  CAS  Google Scholar 

  67. Gal, M., P. Schanda, B. Brutscher, and L. Frydman. (2007) UltraSOFAST HMQC NMR and the repetitive acquisition of 2D protein spectra at Hz rates. J Am Chem Soc. 129, 1372–7.

    Article  PubMed  CAS  Google Scholar 

  68. Spera, S., M. Ikura, and A. Bax. (1991) Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1, 155–65.

    Article  PubMed  CAS  Google Scholar 

  69. Andrec, M. and J.H. Prestegard. (1997) Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements. J Biomol NMR. 9, 136–50.

    Article  PubMed  CAS  Google Scholar 

  70. Bockmann, A. and E. Guittet. (1997) Determination of fast proton exchange rates of biomolecules by NMR using water selective diffusion experiments. FEBS Lett. 418, 127–30.

    Article  PubMed  CAS  Google Scholar 

  71. Hwang, T.L., P.C. van Zijl, and S. Mori. (1998) Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J Biomol NMR. 11, 221–6.

    Article  PubMed  CAS  Google Scholar 

  72. Bollen, Y.J., M.B. Kamphuis, and C.P. van Mierlo. (2006) The folding energy landscape of apoflavodoxin is rugged: hydrogen exchange reveals nonproductive misfolded intermediates. Proc Natl Acad Sci U S A. 103, 4095–100.

    Article  PubMed  CAS  Google Scholar 

  73. Carulla, N., G.L. Caddy, D.R. Hall, J. Zurdo, M. Gairi, M. Feliz, E. Giralt, C.V. Robinson, and C.M. Dobson. (2005) Molecular recycling within amyloid fibrils. Nature. 436, 554–8.

    Article  PubMed  CAS  Google Scholar 

  74. Carulla, N., M. Zhou, M. Arimon, M. Gairi, E. Giralt, C.V. Robinson, and C.M. Dobson. (2009) Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proc Natl Acad Sci U S A. 106, 7828–33.

    Article  PubMed  CAS  Google Scholar 

  75. Voss, J., L. Salwinski, H.R. Kaback, and W.L. Hubbell. (1995) A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme. Proc Natl Acad Sci U S A. 92, 12295–9.

    Article  PubMed  CAS  Google Scholar 

  76. Lietzow, M.A., M. Jamin, H.J. Jane Dyson, and P.E. Wright. (2002) Mapping long-range contacts in a highly unfolded protein. J Mol Biol. 322, 655–62.

    Article  PubMed  CAS  Google Scholar 

  77. Gillespie, J.R. and D. Shortle. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J Mol Biol. 268, 158–69.

    Article  PubMed  CAS  Google Scholar 

  78. Gillespie, J.R. and D. Shortle. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol. 268, 170–84.

    Article  PubMed  CAS  Google Scholar 

  79. Dedmon, M.M., K. Lindorff-Larsen, J. Christodoulou, M. Vendruscolo, and C.M. Dobson. (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc. 127, 476–7.

    Article  PubMed  CAS  Google Scholar 

  80. Piotto, M., V. Saudek, and V. Sklenar. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 2, 661–5.

    Article  PubMed  CAS  Google Scholar 

  81. Grzesiek, S. and A. Bax. (1993) Measurement of amide proton exchange rates and NOEs with water in 13C/15N-enriched calcineurin B. J Biomol NMR. 3, 627–38.

    PubMed  CAS  Google Scholar 

  82. Palmer, A.G., 3rd, J. Cavanagh, P.E. Wright, and M. Rance. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson. 93, 151–170.

    CAS  Google Scholar 

  83. Cavanagh, J., A.G. Palmer, 3rd, P.E. Wright, and M. Rance. (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear relay spectoscopy. J Magn Reson. 91, 429–436.

    CAS  Google Scholar 

  84. Krezel, A. and W. Bal. (2004) A formula for correlating pKa values determined in D2O and H2O. J Inorg Biochem. 98, 161–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Christodoulou lab for useful discussions and Dr. John Kirkpatrick for critical reading of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Christodoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cabrita, L.D., Waudby, C.A., Dobson, C.M., Christodoulou, J. (2011). Solution-State Nuclear Magnetic Resonance Spectroscopy and Protein Folding. In: Hill, A., Barnham, K., Bottomley, S., Cappai, R. (eds) Protein Folding, Misfolding, and Disease. Methods in Molecular Biology, vol 752. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-223-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-223-0_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-221-6

  • Online ISBN: 978-1-60327-223-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics