Abstract
The expression and harvesting of proteins from insoluble inclusion bodies by solubilization and refolding is a technique commonly used in the production of recombinant proteins. Despite the importance of refolding, publications in the literature are essentially ad hoc reports consisting of a dazzling array of experimental protocols and a diverse collection of buffer cocktails. For the protein scientists, using this information to refold their protein of interest presents enormous challenges. Here, we describe some of the practical considerations in refolding and present several standard protocols. Further, we describe how refolding procedures can be designed and modified using the information in the REFOLD database (http://refold.med.monash.edu.au), a freely available, open repository for protocols describing the refolding and purification of recombinant proteins.
Key words
- Protein expression
- Refolding
- Renaturation
- Inclusion body
- Aggregate
- Refold
- Misfolding
- Solubilization
This is a preview of subscription content, access via your institution.
Buying options


References
Sorensen, H. P., and Mortensen, K. K. (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli Microb. Cell Fact. 4, 1.
Sorensen, H. P., and Mortensen, K. K. (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli J. Biotechnol. 115, 113–28.
De Marco, V., Stier, G., Blandin, S., and de Marco, A. (2004) The solubility and stability of recombinant proteins are increased by their fusion to NusA Biochem. Biophys. Res. Commun. 322, 766–71.
Dyson, M. R., Shadbolt, S. P., Vincent, K. J., Perera, R. L., and McCafferty, J. (2004) Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression BMC Biotechnol. 4, 32.
Kapust, R. B., and Waugh, D. S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused Protein Sci. 8, 1668–74.
Cabrita, L. D., and Bottomley, S. P. (2004) Protein expression and refolding - A practical guide to getting the most out of inclusion bodies Biotechnol. Annu. Rev. 10, 31–50.
Fahnert, B., Lilie, H., and Neubauer, P. (2004) Inclusion bodies: formation and utilisation Adv. Biochem. Eng. Biotechnol. 89, 93–142.
Middelberg, A. P. (2002) Preparative protein refolding Trends Biotechnol. 20, 437–43.
Panda, A. K. (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli Adv. Biochem. Eng. Biotechnol. 85, 43–93.
Tsumoto, K., Ejima, D., Kumagai, I., and Arakawa, T. (2003) Practical considerations in refolding proteins from inclusion bodies Protein Expr Purif 28, 1–8.
Clark, E. D. B. (1998) Refolding of recombinant proteins Curr. Opin. Biotechnol. 9, 157–63.
Buckle, A. M., Devlin, G. L., Jodun, R. A., Fulton, K. F., Faux, N., Whisstock, J. C., and Bottomley, S. P. (2005) The matrix refolded Nat Methods 2, 3.
Chow, M. K., Amin, A. A., Fulton, K. F., Fernando, T., Kamau, L., Batty, C., Louca, M., Ho, S., Whisstock, J. C., Bottomley, S. P., and Buckle, A. M. (2006) The REFOLD database: a tool for the optimization of protein expression and refolding Nucleic Acids Res 34, D207–12.
Chow, M. K., Amin, A. A., Fulton, K. F., Whisstock, J. C., Buckle, A. M., and Bottomley, S. P. (2006) REFOLD: an analytical database of protein refolding methods Protein Expr Purif 46, 166–71.
Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O’Donovan, C., Redaschi, N., and Yeh, L. S. (2004) UniProt: the Universal Protein knowledgebase Nucleic Acids Res. 32, D115–9.
Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures J. Mol. Biol. 247, 536–40.
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res 25, 3389–402.
Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J. S., and Arakawa, T. (2004) Role of arginine in protein refolding, solubilization, and purification Biotechnol Prog 20, 1301–8.
Altamirano, M. M., Golbik, R., Zahn, R., Buckle, A. M., and Fersht, A. R. (1997) Refolding chromatography with immobilized mini-chaperones Proc Natl Acad Sci U S A 94, 3576–8.
Acknowledgments
The authors would like to acknowledge the contribution of all the researchers whose published data has been entered into REFOLD. This work was supported by grants from the National Health and Medical Research Council, the Victorian State Government, and the Victorian Partnership for Advanced Computing. SPB is a Monash University Senior Logan Fellow and NHMRC Senior Research Fellow. AMB is an NHMRC Senior Research Fellow.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Phan, J., Yamout, N., Schmidberger, J., Bottomley, S.P., Buckle, A.M. (2011). Refolding Your Protein with a Little Help from REFOLD. In: Hill, A., Barnham, K., Bottomley, S., Cappai, R. (eds) Protein Folding, Misfolding, and Disease. Methods in Molecular Biology, vol 752. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-223-0_4
Download citation
DOI: https://doi.org/10.1007/978-1-60327-223-0_4
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-60327-221-6
Online ISBN: 978-1-60327-223-0
eBook Packages: Springer Protocols