Skip to main content

An Overview of MicroRNA Methods: Expression Profiling and Target Identification

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 823))

Abstract

MicroRNAs (miRNAs) are small, single-stranded RNA molecules encoded by genes that are transcribed from DNA but not translated into protein (noncoding RNA). The ability of miRNA to regulate the expression of, as yet, an unknown quantity of targets has recently become an area of huge interest to researchers studying many different areas in many species. Identifying miRNA targets provides functional insights and strategies for therapy. Furthermore, the recent advent of high-throughput methods for profiling miRNA expression and for the identification of miRNA targets has ushered in a new era in the research of gene regulation. miRNA profiling further adds a new dimension of information for the molecular profiling of disease. Summarized herein are the methods used to query the expression of miRNAs at both an individual and global level. We have also described modern computational approaches to identifying miRNA target transcripts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee, R. C., Feinbaum, R. L., Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 84354.

    Google Scholar 

  2. Esquela-Kerscher, A., Slack, F. J. (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 25969.

    Google Scholar 

  3. Calin, G. A., Croce, C. M. (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6, 85766.

    Google Scholar 

  4. Grosshans, H., Slack, F. J. (2002) Micro-RNAs: small is plentiful. J Cell Biol 156, 1721.

    Google Scholar 

  5. Lee, Y., Jeon, K., Lee, J. T., Kim, S., Kim, V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization. Embo J 21, 466370.

    Google Scholar 

  6. Smalheiser, N. R. (2003) EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol 4, 403.

    Google Scholar 

  7. Cai, X., Hagedorn, C. H., Cullen, B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 10, 195766.

    Google Scholar 

  8. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., Hannon, G. J. (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432, 2315.

    Google Scholar 

  9. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E. et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 9016.

    Google Scholar 

  10. Cairo, S., Wang, Y., de Reynies, A., Duroure, K., Dahan, J., Redon, M. J. et al. (2010) Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A 107, 204716.

    Google Scholar 

  11. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 2536.

    Google Scholar 

  12. Xu, P., Vernooy, S. Y., Guo, M., Hay, B. A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13, 7905.

    Google Scholar 

  13. Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 20225.

    Google Scholar 

  14. Houbaviy, H. B., Murray, M. F., Sharp, P. A. (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5, 3518.

    Google Scholar 

  15. Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M. et al. (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26, 4629.

    Google Scholar 

  16. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E. et al. (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99, 155249.

    Google Scholar 

  17. Metzler, M., Wilda, M., Busch, K., Viehmann, S., Borkhardt, A. (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 1679.

    Google Scholar 

  18. Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S. et al. (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65, 706570.

    Google Scholar 

  19. Fassan, M., Volinia, S., Palatini, J., Pizzi, M., Baffa, R., De Bernard, M. et al. (2010) MicroRNA expression profiling in human Barrett’s carcinogenesis. Int J Cancer

    Google Scholar 

  20. Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., Young, G. P., James, R. J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1, 88291.

    Google Scholar 

  21. Tomimaru, Y., Eguchi, H., Nagano, H., Wada, H., Tomokuni, A., Kobayashi, S. et al. (2010) MicroRNA-21 induces resistance to the anti-tumour effect of interferon-alpha/5-fluorouracil in hepatocellular carcinoma cells. Br J Cancer 103, 161726.

    Google Scholar 

  22. Ji, J., Yamashita, T., Budhu, A., Forgues, M., Jia, H. L., Li, C. et al. (2009) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50, 47280.

    Google Scholar 

  23. Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H. et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64, 37536.

    Google Scholar 

  24. Liu, X., Sempere, L. F., Galimberti, F., Freemantle, S. J., Black, C., Dragnev, K. H. et al. (2009) Uncovering growth-suppressive MicroRNAs in lung cancer. Clin Cancer Res 15, 117783.

    Google Scholar 

  25. Liu, X., Sempere, L. F., Ouyang, H., Memoli, V. A., Andrew, A. S., Luo, Y. et al. (2010) MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 120, 1298309.

    Google Scholar 

  26. Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., Calin, G. A. (2009) MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer 9, 293302.

    Google Scholar 

  27. Ryan, B. M., Robles, A. I., Harris, C. C. (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10, 389402.

    Google Scholar 

  28. Junker, A., Hohlfeld, R., Meinl, E. (2010) The emerging role of microRNAs in multiple sclerosis. Nat Rev Neurol 7, 5659.

    Google Scholar 

  29. Hassan, M. Q., Gordon, J. A., Beloti, M. M., Croce, C. M., van Wijnen, A. J., Stein, J. L. et al. (2010) A network connecting Runx2, SATB2, and the miR-23a∼27a∼24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci U S A 107, 1987984.

    Google Scholar 

  30. Nana-Sinkam, S. P., Fabbri, M., Croce, C. M. (2010) MicroRNAs in cancer: personalizing diagnosis and therapy. Ann N Y Acad Sci 1210, 2533.

    Google Scholar 

  31. Krol, J., Loedige, I., Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11, 597610.

    Google Scholar 

  32. Garzon, R., Marcucci, G., Croce, C. M. (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9, 77589.

    Google Scholar 

  33. (2010) Megaplex Pools for microRNA Expression Analysis. 4399721 Rev C. Applied Biosystems/Life Technologies: Foster City, CA, 1–30.

    Google Scholar 

  34. (2011) mirVana miRNA Isolation Kit Protocol. Revision C Ambion P/N 1560M. Ambion/Life Technologies: Carlsbad, CA, 1–33.

    Google Scholar 

  35. (2011) TaqMan Small RNA Assays Protocol. 4364031 Rev E. Applied Biosystems/Life Technologies: Carlsbad, CA, 1–41.

    Google Scholar 

  36. Gamazon, E. R., Im, H. K., Duan, S., Lussier, Y. A., Cox, N. J., Dolan, M. E. et al. (2010) Exprtarget: an integrative approach to predicting human microRNA targets. PLoS One 5, e13534.

    Google Scholar 

  37. Friard, O., Re, A., Taverna, D., De Bortoli, M., Cora, D. (2010) CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics 11, 435.

    Google Scholar 

  38. Bartonicek, N., Enright, A. J. (2010) SylArray: a web server for automated detection of miRNA effects from expression data. Bioinformatics 26, 29001.

    Google Scholar 

  39. Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q. et al. (2010) dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics 11 Suppl 4, S5.

    Google Scholar 

  40. Zhang, Y., Guan, D. G., Yang, J. H., Shao, P., Zhou, H., Qu, L. H. (2010) ncRNAimprint: a comprehensive database of mammalian imprinted noncoding RNAs. Rna 16, 1889901.

    Google Scholar 

  41. Griffiths-Jones, S. (2010) miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics Chapter 12, Unit 12 9 1–10.

    Google Scholar 

  42. Griffiths-Jones, S. (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342, 12938.

    Google Scholar 

  43. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., Enright, A. J. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34, D140-4.

    Google Scholar 

  44. Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X. et al. (2003) A uniform system for microRNA annotation. Rna 9, 2779.

    Google Scholar 

  45. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., Marks, D. S. (2003) MicroRNA targets in Drosophila. Genome Biol 5, R1.

    Google Scholar 

  46. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., Marks, D. S. (2004) Human MicroRNA targets. PLoS Biol 2, e363.

    Google Scholar 

  47. Stark, A., Brennecke, J., Russell, R. B., Cohen, S. M. (2003) Identification of Drosophila MicroRNA targets. PLoS Biol 1, E60.

    Google Scholar 

  48. Hsu, P. W., Huang, H. D., Hsu, S. D., Lin, L. Z., Tsou, A. P., Tseng, C. P. et al. (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 34, D135-9.

    Google Scholar 

  49. Sethupathy, P., Corda, B., Hatzigeorgiou, A. G. (2006) TarBase: A comprehensive database of experimentally supported animal microRNA targets. Rna 12, 1927.

    Google Scholar 

  50. Chaudhuri, K., Chatterjee, R. (2007) MicroRNA detection and target prediction: integration of computational and experimental approaches. DNA Cell Biol 26, 32137.

    Google Scholar 

  51. Watanabe, Y., Tomita, M., Kanai, A. (2007) Computational methods for microRNA target prediction. Methods Enzymol 427, 6586.

    Google Scholar 

  52. Lin, S. Y., Johnson, S. M., Abraham, M., Vella, M. C., Pasquinelli, A., Gamberi, C. et al. (2003) The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 4, 63950.

    Google Scholar 

  53. Doench, J. G., Sharp, P. A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18, 50411.

    Google Scholar 

  54. Wuchty, S., Fontana, W., Hofacker, I. L., Schuster, P. (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49, 14565.

    Google Scholar 

  55. Rajewsky, N., Socci, N. D. (2004) Computational identification of microRNA targets. Dev Biol 267, 52935.

    Google Scholar 

  56. Rajewsky, N. (2006) microRNA target predictions in animals. Nat Genet 38 Suppl, S8-13.

    Google Scholar 

  57. Watanabe, Y., Yachie, N., Numata, K., Saito, R., Kanai, A., Tomita, M. (2006) Computational analysis of microRNA targets in Caenorhabditis elegans. Gene 365, 210.

    Google Scholar 

  58. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J. et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37, 495500.

    Google Scholar 

  59. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 78798.

    Google Scholar 

  60. Hofacker, I. L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31, 342931.

    Google Scholar 

  61. Burgler, C., Macdonald, P. M. (2005) Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics 6, 88.

    Google Scholar 

  62. Lewis, B. P., Burge, C. B., Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 1520.

    Google Scholar 

  63. Friedman, R. C., Farh, K. K., Burge, C. B., Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92105.

    Google Scholar 

  64. Helvik, S. A., Snove, O., Jr., Saetrom, P. (2007) Reliable prediction of Drosha processing sites improves microRNA gene prediction. Bioinformatics 23, 1429.

    Google Scholar 

  65. Hertel, J., Stadler, P. F. (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22, e197-202.

    Google Scholar 

  66. Kim, S. K., Nam, J. W., Rhee, J. K., Lee, W. J., Zhang, B. T. (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7, 411.

    Google Scholar 

  67. Grun, D., Wang, Y. L., Langenberger, D., Gunsalus, K. C., Rajewsky, N. (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1, e13.

    Google Scholar 

  68. Lall, S., Grun, D., Krek, A., Chen, K., Wang, Y. L., Dewey, C. N. et al. (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16, 46071.

    Google Scholar 

  69. Doran, J., Strauss, W. M. (2007) Bio-informatic trends for the determination of miRNA-target interactions in mammals. DNA Cell Biol 26, 35360.

    Google Scholar 

  70. Zhu, E., Zhao, F., Xu, G., Hou, H., Zhou, L., Li, X. et al. (2010) mirTools: microRNA profiling and discovery based on high-throughput sequencing. Nucleic Acids Res 38, W392-7.

    Google Scholar 

  71. Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W. L., Thomson, A. M. et al. (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126, 120317.

    Google Scholar 

  72. Stark, A., Brennecke, J., Bushati, N., Russell, R. B., Cohen, S. M. (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 113346.

    Google Scholar 

  73. Wang, X. (2006) Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34, 164652.

    Google Scholar 

  74. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J. et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 76973.

    Google Scholar 

  75. Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O. et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37, 76670.

    Google Scholar 

  76. Vatolin, S., Navaratne, K., Weil, R. J. (2006) A novel method to detect functional microRNA targets. J Mol Biol 358, 98396.

    Google Scholar 

  77. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T., Jewell, D. (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13, 80718.

    Google Scholar 

  78. Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., Ambros, V. (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5, R13.

    Google Scholar 

  79. Tang, F., Hajkova, P., Barton, S. C., Lao, K., Surani, M. A. (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34, e9.

    Google Scholar 

  80. Fu, H. J., Zhu, J., Yang, M., Zhang, Z. Y., Tie, Y., Jiang, H. et al. (2006) A novel method to monitor the expression of microRNAs. Mol Biotechnol 32, 197204.

    Google Scholar 

  81. Liu, C. G., Calin, G. A., Meloon, B., Gamliel, N., Sevignani, C., Ferracin, M. et al. (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 101, 97404.

    Google Scholar 

  82. Nelson, P. T., Baldwin, D. A., Kloosterman, W. P., Kauppinen, S., Plasterk, R. H., Mourelatos, Z. (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. Rna 12, 18791.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smith, S.M., Murray, D.W. (2012). An Overview of MicroRNA Methods: Expression Profiling and Target Identification. In: Espina, V., Liotta, L. (eds) Molecular Profiling. Methods in Molecular Biology, vol 823. Humana Press. https://doi.org/10.1007/978-1-60327-216-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-216-2_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-215-5

  • Online ISBN: 978-1-60327-216-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics