Skip to main content

Tissue Microarrays as a Tool in the Discovery and Validation of Predictive Biomarkers

  • Protocol
  • First Online:
Book cover Molecular Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 823))

Abstract

The tissue microarray (TMA) is the embodiment of high-throughput pathology. The platform combines tens to hundreds of tissue samples on a single microscope slide for interrogation with routine molecular pathology tools. TMAs have enabled the rapid and cost-effective screening of biomarkers for diagnostic, prognostic, and predictive utility. Most commonly applied to the field of oncology, the TMA has accelerated the development of new biomarkers, and is emerging as an essential tool in the discovery and validation of tissue biomarkers for use in personalized medicine. This chapter provides an overview of TMA technology and highlights the advantages of using TMAs as tools toward rapid introduction of new biomarkers for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battifora, H. (1986) The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55, 244–8.

    PubMed  CAS  Google Scholar 

  2. Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., et al. (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4, 844–7.

    Article  PubMed  CAS  Google Scholar 

  3. Fridman, E., Daya, D., Srigley, J., Whelan, K. F., Lu, J. P., et al. (2011) Construction of tissue micro array from prostate needle biopsies using the vertical clustering re-arrangement technique. Prostate.

    Google Scholar 

  4. Ke, A. W., Shi, G. M., Zhou, J., Huang, X. Y., Shi, Y. H., et al. (2011) CD151 Amplifies Signaling by Integrin alpha6beta1 to PI3K and Induces the Epithelial-Mesenchymal Transition in HCC Cells. Gastroenterology.

    Google Scholar 

  5. Simon, R., Nocito, A., Hubscher, T., Bucher, C., Torhorst, J., et al. (2001) Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J Natl Cancer Inst 93, 1141–6.

    Article  PubMed  CAS  Google Scholar 

  6. Kwak, J. T., Hewitt, S. M., Sinha, S., and Bhargava, R. (2011) Multimodal microscopy for automated histologic analysis of prostate cancer. BMC Cancer 11, 62.

    Article  PubMed  Google Scholar 

  7. Hewitt, S., Takikita, M., Braunschweig, T., and Chung, J. Y. (2007) Promises and challenges of predictive tissue biomarkers. Biomarkers in Medicine 1, 313–18.

    Article  PubMed  CAS  Google Scholar 

  8. Dissanayake, S. K., Olkhanud, P. B., O’Connell, M. P., Carter, A., French, A. D., et al. (2008) Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Res 68, 10205–14.

    Article  PubMed  CAS  Google Scholar 

  9. Shou, J. Z., Hu, N., Takikita, M., Roth, M. J., Johnson, L. L., et al. (2008) Overexpression of CDC25B and LAMC2 mRNA and protein in esophageal squamous cell carcinomas and premalignant lesions in subjects from a high-risk population in China. Cancer Epidemiol Biomarkers Prev 17, 1424–35.

    Article  PubMed  CAS  Google Scholar 

  10. Hewitt, S. M. (2004) Design, Construction, and Use of Tissue Microarrays, in Protein Arrays: Methods and Protocols (Fung, E. T., ed.), Springer, New York, NY, pp. 61–72.

    Google Scholar 

  11. Whiteford, C. C., Bilke, S., Greer, B. T., Chen, Q., Braunschweig, T. A., et al. (2007) Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 67, 32–40.

    Article  PubMed  CAS  Google Scholar 

  12. Sauter, G., Simon, R., and Hillan, K. (2003) Tissue microarrays in drug discovery. Nat Rev Drug Discov 2, 962–72.

    Article  PubMed  CAS  Google Scholar 

  13. Braunschweig, T., Chung, J. Y., and Hewitt, S. M. (2005) Tissue microarrays: bridging the gap between research and the clinic. Expert Rev Proteomics 2, 325–36.

    Article  PubMed  CAS  Google Scholar 

  14. Fergenbaum, J. H., Garcia-Closas, M., Hewitt, S. M., Lissowska, J., Sakoda, L. C., et al. (2004) Loss of antigenicity in stored sections of breast cancer tissue microarrays. Cancer Epidemiol Biomarkers Prev 13, 667–72.

    PubMed  CAS  Google Scholar 

  15. Lim, M. D., Dickherber, A., and Compton, C. C. (2011) Before you analyze a human specimen, think quality, variability, and bias. Anal Chem 83, 8–13.

    Article  PubMed  CAS  Google Scholar 

  16. Hewitt, S. M., Lewis, F. A., Cao, Y., Conrad, R. C., Cronin, M., et al. (2008) Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med 132, 1929–35.

    PubMed  Google Scholar 

  17. Webb, D., Hamilton, M. A., Harkin, G. J., Lawrence, S., Camper, A. K., et al. (2003) Assessing technician effects when extracting quantities from microscope images. J Microbiol Methods 53, 97–106.

    Article  PubMed  CAS  Google Scholar 

  18. Espina, V., Edmiston, K. H., Heiby, M., Pierobon, M., Sciro, M., et al. (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7, 1998–2018.

    Article  PubMed  CAS  Google Scholar 

  19. Espina, V., Mueller, C., Edmiston, K., Sciro, M., Petricoin, E. F., et al. (2009) Tissue is alive: New technologies are needed to address the problems of protein biomarker pre-analytical variability. PROTEOMICS - CLINICAL APPLICATIONS 3, 874–82.

    Article  PubMed  CAS  Google Scholar 

  20. Chung, J. Y., Braunschweig, T., Williams, R., Guerrero, N., Hoffmann, K. M., et al. (2008) Factors in tissue handling and processing that impact RNA obtained from formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem 56, 1033–42.

    Article  PubMed  CAS  Google Scholar 

  21. Wolff, A. C., Hammond, M. E., Schwartz, J. N., Hagerty, K. L., Allred, D. C., et al. (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131, 18–43.

    PubMed  CAS  Google Scholar 

  22. Wasielewski, R., Hasselmann, S., Ruschoff, J., Fisseler-Eckhoff, A., and Kreipe, H. (2008) Proficiency testing of immunohistochemical biomarker assays in breast cancer. Virchows Arch 453, 537–43.

    Article  PubMed  Google Scholar 

  23. Gown, A. M. (2008) Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol 21 Suppl 2, S8-S15.

    Article  PubMed  CAS  Google Scholar 

  24. Bogen, S. A., Vani, K., McGraw, B., Federico, V., Habib, I., et al. (2009) Experimental validation of peptide immunohistochemistry controls. Appl Immunohistochem Mol Morphol 17, 239–46.

    Article  PubMed  CAS  Google Scholar 

  25. Oldenhuis, C. N., Oosting, S. F., Gietema, J. A., and de Vries, E. G. (2008) Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 44, 946–53.

    Article  PubMed  CAS  Google Scholar 

  26. Hewitt, S. M., Takikita, M., Abedi-Ardekani, B., Kris, Y., Bexfield, K., et al. (2008) Validation of proteomic-based discovery with tissue microarrays. PROTEOMICS - CLINICAL APPLICATIONS 2, 1460–66.

    Article  PubMed  CAS  Google Scholar 

  27. Leong, A. S. (2004) Pitfalls in diagnostic immunohistology. Adv Anat Pathol 11, 86–93.

    Article  PubMed  Google Scholar 

  28. Takikita, M., Altekruse, S., Lynch, C. F., Goodman, M. T., Hernandez, B. Y., et al. (2009) Associations between selected biomarkers and prognosis in a population-based pancreatic cancer tissue microarray. Cancer Res 69, 2950–5.

    Article  PubMed  CAS  Google Scholar 

  29. Fisher, B., Costantino, J. P., Wickerham, D. L., Cecchini, R. S., Cronin, W. M., et al. (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97, 1652–62.

    Article  PubMed  CAS  Google Scholar 

  30. Amado, R. G., Wolf, M., Peeters, M., Van Cutsem, E., Siena, S., et al. (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26, 1626–34.

    Article  PubMed  CAS  Google Scholar 

  31. Brennan, D. J., Rexhepaj, E., O’Brien, S. L., McSherry, E., O’Connor, D. P., et al. (2008) Altered cytoplasmic-to-nuclear ratio of survivin is a prognostic indicator in breast cancer. Clin Cancer Res 14, 2681–9.

    Article  PubMed  CAS  Google Scholar 

  32. Rubin, M. A., Zhou, M., Dhanasekaran, S. M., Varambally, S., Barrette, T. R., et al. (2002) alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. Jama 287, 1662–70.

    Article  PubMed  CAS  Google Scholar 

  33. Braunschweig, T., Kaserer, K., Chung, J.-Y., Bilke, S., Krizman, D., et al. (2007) Proteomic expression profiling of thyroid neoplasms. PROTEOMICS - Clinical Applications 1, 264–71.

    Article  PubMed  CAS  Google Scholar 

  34. Chung, J. Y., Hong, S. M., Choi, B. Y., Cho, H., Yu, E., et al. (2009) The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma. Clin Cancer Res 15, 660–7.

    Article  PubMed  CAS  Google Scholar 

  35. Tsurutani, J., Fukuoka, J., Tsurutani, H., Shih, J. H., Hewitt, S. M., et al. (2006) Evaluation of two phosphorylation sites improves the prognostic significance of Akt activation in non-small-cell lung cancer tumors. J Clin Oncol 24, 306–14.

    Article  PubMed  CAS  Google Scholar 

  36. Camp, R. L., Chung, G. G., and Rimm, D. L. (2002) Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 8, 1323–7.

    Article  PubMed  CAS  Google Scholar 

  37. Nadler, Y., Camp, R. L., Giltnane, J. M., Moeder, C., Rimm, D. L., et al. (2008) Expression patterns and prognostic value of Bag-1 and Bcl-2 in breast cancer. Breast Cancer Res 10, R35.

    Article  PubMed  Google Scholar 

  38. Chung, J. Y., Braunschweig, T., Baibakov, G., Galperin, M., Ramesh, A., et al. (2006) Transfer and multiplex immunoblotting of a paraffin embedded tissue. Proteomics 6, 767–74.

    Article  PubMed  CAS  Google Scholar 

  39. Chung, J. Y., Braunschweig, T., Hu, N., Roth, M., Traicoff, J. L., et al. (2006) A multiplex tissue immunoblotting assay for proteomic profiling: a pilot study of the normal to tumor transition of esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 15, 1403–8.

    Article  PubMed  CAS  Google Scholar 

  40. Bhargava, R., Fernandez, D. C., Hewitt, S. M., and Levin, I. W. (2006) High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data. Biochim Biophys Acta 1758, 830–45.

    Article  PubMed  CAS  Google Scholar 

  41. Fernandez, D. C., Bhargava, R., Hewitt, S. M., and Levin, I. W. (2005) Infrared spectroscopic imaging for histopathologic recognition. Nat Biotechnol 23, 469–74.

    Article  PubMed  CAS  Google Scholar 

  42. Chen, T., Lee, M. J., Kim, Y. S., Lee, S., Kummar, S., et al. (2008) Pharmacodynamic assessment of histone deacetylase inhibitors: infrared vibrational spectroscopic imaging of protein acetylation. Anal Chem 80, 6390–6.

    Article  PubMed  CAS  Google Scholar 

  43. DiVito, K. A., Charette, L. A., Rimm, D. L., and Camp, R. L. (2004) Long-term preservation of antigenicity on tissue microarrays. Lab Invest 84, 1071–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Hewitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hewitt, S.M. (2012). Tissue Microarrays as a Tool in the Discovery and Validation of Predictive Biomarkers. In: Espina, V., Liotta, L. (eds) Molecular Profiling. Methods in Molecular Biology, vol 823. Humana Press. https://doi.org/10.1007/978-1-60327-216-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-216-2_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-215-5

  • Online ISBN: 978-1-60327-216-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics