Skip to main content

The Juxtacellular Recording-Labeling Technique

  • Protocol
  • First Online:
Electrophysiological Recording Techniques

Part of the book series: Neuromethods ((NM,volume 54))

Abstract

The single-cell juxtacellular recording–labeling technique makes it possible to label the neuron recorded extracellularly. It is a very useful tool for achieving single-cell structure–function correlation studies in living, intact neural networks and for determining their phenotype and genotype. It can reveal the overall picture of the smallest neurons, including interneurons. It can be combined with other electrophysiological techniques (e.g. electro-encephalographic recordings and intracerebral electrical stimulation), electron microscope, immunohistochemical, molecular and/or genetic techniques. Its principle consists in iontophoresing tracer molecules into the membrane of the neuron being recorded. This is done under continuous electrophysiological monitoring, allowing the retrieval of the neuron labeled in more than 85% of attempts. Continuous DC recordings suggest that the juxtacellular filling “or tickling” procedure produces a transient micro-electroporation, which allows the internalization of the tracer into the intracellular space. Since this procedure allows single neurons to be recorded for long periods, many electrophysiological features can be collected, and the finest and remotest axonal ramifications can be marked. In spite of some limitations and pitfalls, the juxtacellular technique remains the high standard for investigating the genetic, molecular, physiological, and architectural bases of cell–cell communication. It is also a very versatile and useful tool when it comes to decipher, for instance, the molecular, cellular, and network mechanisms of brain state, physiological, and pathological oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinault D (1994) Golgi-like labeling of a single neuron recorded extracellularly. Neurosci Lett 170:255–260.

    Article  CAS  PubMed  Google Scholar 

  2. Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65:113–136.

    Article  CAS  PubMed  Google Scholar 

  3. Ramón Y, Cajal S (1911) Histologie du système nerveux de I’homme et des vertébrés. Paris: Maloine 1.

    Google Scholar 

  4. Nauta WJH, Ebbesson SOE (1970) National Institute of Neurological Diseases and Stroke., Puerto Rico. University. Contemporary research methods in neuroanatomy. New York: Springer. viii, 386 p.

    Chapter  Google Scholar 

  5. Björklund A, Hökfelt T (1983) Handbook of chemical neuroanatomy. Amsterdam; New York: Elsevier. v. <1, 4, 6–16, 18, 20 > p.

    Google Scholar 

  6. Heimer L, Záborszky L (1989) Neuroanatomical tract-tracing methods, 2: recent progress. New York: Plenum. xv, 408 p.

    Book  Google Scholar 

  7. Bolam JP, editor. (1993) Experimental neuroanatomy: a practical approach. New York: Oxford University Press.

    Google Scholar 

  8. Kater SB, Nicholson C (1973) Intracellular staining in neurobiology. New York, Springer. xii, 332 p.

    Book  Google Scholar 

  9. Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14:741–759.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson P, Kitchener PD, Snow PJ (1996) Intraaxonal injection of neurobiotin reveals the long-ranging projections of A beta-hair follicle afferent fibers to the cat dorsal horn. J Neurophysiol 76:242–254.

    Article  CAS  PubMed  Google Scholar 

  11. Uhlrich DJ, Cucchiaro JB, Humphrey AL, Sherman SM (1991) Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. J Neurophysiol 65:1528–1541.

    Article  CAS  PubMed  Google Scholar 

  12. Lynch G, Deadwyler SA, Gall C (1974) Labeling of central nervous system neurons with extracellular recording microelectrodes. Brain Res 66:337–341.

    Article  Google Scholar 

  13. Benson TE, Voigt HF (1995) Neuron labeling by extracellular delivery of horseradish peroxidase in vivo: a method for studying the local circuitry of projection and interneurons at physiologically characterized sites. J Neurosci Methods 57:81–91.

    Article  CAS  PubMed  Google Scholar 

  14. Deschenes M, Bourassa J, Pinault D (1994) Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res 664:215–219.

    Article  CAS  PubMed  Google Scholar 

  15. Bourassa J, Pinault D, Deschenes M (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci 7:19–30.

    Article  CAS  PubMed  Google Scholar 

  16. Pinault D, Bourassa J, Deschenes M (1995a) The axonal arborization of single thalamic reticular neurons in the somatosensory thalamus of the rat. Eur J Neurosci 7:31–40.

    Article  CAS  PubMed  Google Scholar 

  17. Pinault D, Bourassa J, Deschenes M (1995b) Thalamic reticular input to the rat visual thalamus: a single fiber study using biocytin as an anterograde tracer. Brain Res 670:147–152.

    Article  CAS  PubMed  Google Scholar 

  18. Murphy PC, Sillito AM (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci 16:1180–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chevalier G, Deniau JM, Menetrey A (1992) Evidence that biocytin is taken up by axons. Neurosci Lett 140:197–199.

    Article  CAS  PubMed  Google Scholar 

  20. Kirouac GJ, Pittman QJ (1999) Identification of barosensitive neurons in the mediobasal forebrain using juxtacellular labeling. Am J Physiol 276:R1766–R1771.

    CAS  PubMed  Google Scholar 

  21. Purves RD (1981) Microelectrode methods for intracellular recording and ionophoresis. London; New York: Academic Press.

    Google Scholar 

  22. Lee MG, Manns ID, Alonso A, Jones BE (2004) Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J Neurophysiol 92:1182–1198.

    Article  PubMed  Google Scholar 

  23. Houweling AR, Brecht M (2008) Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451:65–68.

    Article  CAS  PubMed  Google Scholar 

  24. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Sydney; Orlando: Academic Press. xxvi, [237] p. of plates p.

    Google Scholar 

  25. Pinault D (2005) A new stabilizing craniotomy-duratomy technique for single-cell anatomo-electrophysiological exploration of living intact brain networks. J Neurosci Methods 141:231–242.

    Article  PubMed  Google Scholar 

  26. Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11.

    Article  CAS  PubMed  Google Scholar 

  27. Lapper SR, Bolam JP (1991) The anterograde and retrograde transport of neurobiotin in the central nervous system of the rat: comparison with biocytin. J Neurosci Methods 39:163–174.

    Article  CAS  PubMed  Google Scholar 

  28. Brandt HM, Apkarian AV (1992) Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey. J Neurosci Methods 45:35–40.

    Article  CAS  PubMed  Google Scholar 

  29. Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41:239–254.

    Article  CAS  PubMed  Google Scholar 

  30. Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775.

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26:10292–10298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bevan MD, Booth PA, Eaton SA, Bolam JP (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18:9438–9452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu Y, Richard S, Parent A (2000) The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci Res 38:49–62.

    Article  CAS  PubMed  Google Scholar 

  35. Mailly P, Charpier S, Mahon S, Menetrey A, Thierry AM, Glowinski J, Deniau JM (2001) Dendritic arborizations of the rat substantia nigra pars reticulata neurons: spatial organization and relation to the lamellar compartmentation of striato-nigral projections. J Neurosci 21:6874–6888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mallet N, Le Moine C, Charpier S, Gonon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sadek AR, Magill PJ, Bolam JP (2007) A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J Neurosci 27:6352–6362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koyama Y, Honda T, Kusakabe M, Kayama Y, Sugiura Y (1998) In vivo electrophysiological distinction of histochemically-identified cholinergic neurons using extracellular recording and labelling in rat laterodorsal tegmental nucleus. Neuroscience 83:1105–1112.

    Article  CAS  PubMed  Google Scholar 

  39. Simpson JI, Hulscher HC, Sabel-Goedknegt E, Ruigrok TJ (2005) Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog Brain Res 148:329–340.

    Article  CAS  PubMed  Google Scholar 

  40. Bartho P, Slezia A, Varga V, Bokor H, Pinault D, Buzsaki G, Acsady L (2007) Cortical control of zona incerta. J Neurosci 27:1670–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang ZW, Deschenes M (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17:6365–6379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cruikshank SJ, Weinberger NM (2001) In vivo Hebbian and basal forebrain stimulation treatment in morphologically identified auditory cortical cells. Brain Res 891:78–93.

    Article  CAS  PubMed  Google Scholar 

  43. Schreihofer AM, Guyenet PG (1997) Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol 387:524–536.

    Article  CAS  PubMed  Google Scholar 

  44. Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848.

    Article  CAS  PubMed  Google Scholar 

  45. Bassant MH, Simon A, Poindessous-Jazat F, Csaba Z, Epelbaum J, Dournaud P (2005) Medial septal GABAergic neurons express the somatostatin sst2A receptor: functional consequences on unit firing and hippocampal theta. J Neurosci 25:2032–2041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song G, Yu Y, Poon CS (2006) Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J Neurosci 26:300–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pinault D, Deschenes M (1998a) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur J Neurosci 10:3462–3469.

    Article  CAS  PubMed  Google Scholar 

  48. Pinault D, Deschenes M (1998b) Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J Comp Neurol 391:180–203.

    Article  CAS  PubMed  Google Scholar 

  49. Bartho P, Freund TF, Acsady L (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 16:999–1014.

    Article  CAS  PubMed  Google Scholar 

  50. Borhegyi Z, Varga V, Szilagyi N, Fabo D, Freund TF (2004) Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J Neurosci 24:8470–8479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lavallee P, Urbain N, Dufresne C, Bokor H, Acsady L, Deschenes M (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J Neurosci 25:7489–7498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Llinas R, Nicholson C (1971) Electrophysio‑logical properties of dendrites and somata in alligator Purkinje cells. J Neurophysiol 34:532–551.

    Article  CAS  PubMed  Google Scholar 

  53. Llinas R, Sugimori M (1980a) Electro-physiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Llinas R, Sugimori M (1980b) Electro-physiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pinault D, Smith Y, Deschenes M (1997) Dendrodendritic and axoaxonic synapses in the thalamic reticular nucleus of the adult rat. J Neurosci 17:3215–3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pilowsky PM, Makeham J (2001) Juxtacellular labeling of identified neurons: kiss the cells and make them dye. J Comp Neurol 433:1–3.

    Article  CAS  PubMed  Google Scholar 

  57. Schreihofer AM, Stornetta RL, Guyenet PG (1999) Evidence for glycinergic respiratory neurons: Botzinger neurons express mRNA for glycinergic transporter 2. J Comp Neurol 407:583–597.

    Article  CAS  PubMed  Google Scholar 

  58. Jones GA, Llewellyn-Smith IJ, Jordan D (2002) Physiological, pharmacological, and immunohistochemical characterisation of juxtacellularly labelled neurones in rat nucleus tractus solitarius. Auton Neurosci 98:12–16.

    Article  CAS  PubMed  Google Scholar 

  59. Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1–31.

    Article  PubMed  Google Scholar 

  60. Glaser EM, Tagamets M, McMullen NT, Van der Loos H (1983) The image-combining computer microscope – an interactive instrument for morphometry of the nervous system. J Neurosci Methods 8:17–32.

    Article  CAS  PubMed  Google Scholar 

  61. Thomson AM, Deuchars J (1994) Temporal and spatial properties of local circuits in neocortex. Trends Neurosci 17:119–126.

    Article  CAS  PubMed  Google Scholar 

  62. Charpier S, Behrends JC, Triller A, Faber DS, Korn H (1995) “Latent” inhibitory connections become functional during activity-dependent plasticity. Proc Natl Acad Sci U S A 92:117–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miles R, Poncer JC (1996) Paired recordings from neurones. Curr Opin Neurobiol 6:387–394.

    Article  CAS  PubMed  Google Scholar 

  64. Strumwasser F, Rosenthal S (1960) Prolonged and patterned direct extracellular stimulation of single neurons. Am J Physiol 198:405–413.

    Article  CAS  PubMed  Google Scholar 

  65. Spehlmann R, Kapp H (1964) Direct extracellular polarization of cortical neurons with multibarreled microelectrodes. Arch Ital Biol 102:74–94.

    CAS  PubMed  Google Scholar 

  66. Fregnac Y, Shulz D, Thorpe S, Bienenstock E (1988) A cellular analogue of visual cortical plasticity. Nature 333:367–370.

    Article  CAS  PubMed  Google Scholar 

  67. Cruikshank SJ, Weinberger NM (1996) Receptive-field plasticity in the adult auditory cortex induced by Hebbian covariance. J Neurosci 16:861–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brons JF, Woody CD, Allon N (1982) Changes in excitability to weak-intensity extracellular electrical stimulation of units of pericruciate cortex in cats. J Neurophysiol 47:377–388.

    Article  CAS  PubMed  Google Scholar 

  69. Andrew RD, Fagan M (1990) A technique for controlling the membrane potential of neurons during unit recording. J Neurosci Methods 33:55–60.

    Article  CAS  PubMed  Google Scholar 

  70. Peinado A, Yuste R, Katz LC (1993) Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10:103–114.

    Article  CAS  PubMed  Google Scholar 

  71. Ling G, Gerard RW (1949) The normal membrane potential of frog sartorius fibers. J Cell Physiol 34:383–396.

    Article  CAS  Google Scholar 

  72. Lorente de Nó, R (1949) Cerebral cortex: Architecture, intracortical connections, motor projections. In: Physiology of the nervous system. J.F. Fulton, editor. Oxford University Press, London. 288–313.

    Google Scholar 

  73. Scheibel ME, and Scheibel AB (1966) The organization of the nucleus reticularis thalami: a Golgi study. Brain Res. 1:43–62.

    Article  CAS  PubMed  Google Scholar 

  74. Jankowska E, Rastad J, Westman J (1976) Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spinocervical tract cells. Brain Res 105:557–562.

    Article  CAS  PubMed  Google Scholar 

  75. McCrea RA, Bishop GA, Kitai ST (1976) Intracellular staining of Purkinje cells and their axons with horseradish peroxidase. Brain Res 118:132–136.

    Article  CAS  PubMed  Google Scholar 

  76. Deschênes M, Hu B (1990) Electrophysiology and pharmacology of the corticothalamic input to lateral thalamic nuclei: An intracellular study in the cat. Eur J Neurosci 2:140–152.

    Article  Google Scholar 

  77. Konopacki J, Bland BH, Dyck R (2003) Intracellular recording and labeling of neurons in midline structures of the rat brain in vivo using sharp electrodes. J Neurosci Methods 127:85–93.

    Article  PubMed  Google Scholar 

  78. Lipski J, Duffin J, Kruszewska B, Zhang X. Upper cervical inspiratory neurons in the rat: an electrophysiological and morphological study. Exp. Brain Res., 1993; 95:477–487.

    Article  CAS  PubMed  Google Scholar 

  79. Pinault D (2003) Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5-9 Hz oscillations. J Physiol 552:881–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pinault D, Vergnes M, Marescaux C (2001) Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105:181–201.

    Article  CAS  PubMed  Google Scholar 

  81. Bordt AS, Hoshi H, Yamada ES, Perryman-Stout WC, Marshak DW (2006) Synaptic input to OFF parasol ganglion cells in macaque retina. J Comp Neurol 498:46–57.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Joshi S, Hawken MJ (2006) Loose-patch-juxtacellular recording in vivo--a method for functional characterization and labeling of neurons in macaque V1. J Neurosci Methods 156:37–49.

    Article  CAS  PubMed  Google Scholar 

  83. Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698:280–284.

    Article  CAS  PubMed  Google Scholar 

  84. Manns ID, Alonso A, Jones BE (2000) Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:1505–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pang K, Tepper JM, Zaborszky L (1998) Morphological and electrophysiological characteristics of noncholinergic basal forebrain neurons. J Comp Neurol 394:186–204.

    Article  CAS  PubMed  Google Scholar 

  86. Bokor H, Frere SG, Eyre MD, Slezia A, Ulbert I, Luthi A, Acsady L (2005) Selective GABAergic control of higher-order thalamic relays. Neuron 45:929–940.

    Article  CAS  PubMed  Google Scholar 

  87. Hajos M, Allers KA, Jennings K, Sharp T, Charette G, Sik A, Kocsis B (2007) Neurochemical identification of stereotypic burst-firing neurons in the rat dorsal raphe nucleus using juxtacellular labelling methods. Eur J Neurosci 25:119–126.

    Article  PubMed  Google Scholar 

  88. Cetas JS, Price RO, Crowe J, Velenovsky DS, McMullen NT (2003) Dendritic orientation and laminar architecture in the rabbit auditory thalamus. J Comp Neurol 458:307–317.

    Article  PubMed  Google Scholar 

  89. Monconduit L, Lopez-Avila A, Molat JL, Chalus M, Villanueva L (2006) Corticofugal output from the primary somatosensory cortex selectively modulates innocuous and noxious inputs in the rat spinothalamic system. J Neurosci 26:8441–8450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Buhl EH, Han ZS, Lorinczi Z, Stezhka VV, Karnup SV, Somogyi P (1994) Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J Neurophysiol 71:1289–1307.

    Article  CAS  PubMed  Google Scholar 

  91. Gulyas AI, Miles R, Hajos N, Freund TF (1993) Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region. Eur J Neurosci 5:1729–1751.

    Article  CAS  PubMed  Google Scholar 

  92. Baranyi A, Chase MH (1983) Effects of juxta- and intracellular microinjection of ethanol on trigeminal motoneurons in the chronic cat. Brain Res 269:159–164.

    Article  CAS  PubMed  Google Scholar 

  93. Soja PJ, Pang W, Taepavarapruk N, Cairns BE, McErlane SA (2001) On the reduction of spontaneous and glutamate-driven spinocerebellar and spinoreticular tract neuronal activity during active sleep. Neuroscience 104:199–206.

    Article  CAS  PubMed  Google Scholar 

  94. Yamuy J, Fung SJ, Xi M, Chase MH (2004) Hypocretinergic control of spinal cord motoneurons. J Neurosci 24:5336–5345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Professor Martin Deschênes (Laval University, Quebec, Canada) with whom I had been learning the anatomofunctional approach, using especially intracellular recordings, of neuronal networks in living intact brain. Without learning the intracellular technique I would not have developed the juxtacellular technique. The present study is supported by the French Institute of Health and Medical Research (INSERM), by the Université of Louis Pasteur and The Université de Strasbourg, Faculté de Médicine, Strasbourg. I also thank Thomas Zheng for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Pinault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pinault, D. (2011). The Juxtacellular Recording-Labeling Technique. In: Vertes, R., Stackman Jr., R. (eds) Electrophysiological Recording Techniques. Neuromethods, vol 54. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-202-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-202-5_3

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-60327-201-8

  • Online ISBN: 978-1-60327-202-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics