Skip to main content

Methods and Algorithms for Relative Quantitative Proteomics by Mass Spectrometry

  • Protocol
  • First Online:
Bioinformatics Methods in Clinical Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 593))

Abstract

Protein quantitation by mass spectrometry (MS) is attractive since it is possible to obtain both the identification and quantitative values of novel proteins and their posttranslational modifications in one experiment. In contrast, protein arrays only provide quantitative values of targeted proteins and their modifications. There are an overwhelming number of quantitative mass spectrometry (MS) methods for protein and peptide quantitation. The aim here is to provide an overview of the most common MS-based quantitative methods used in the proteomics field and discuss the computational algorithms needed for the robust quantitation of proteins, peptides, and their posttranslational modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA. (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3: 1912–1919.

    Article  PubMed  CAS  Google Scholar 

  2. Karp NA, Lilley KS. (2007) Design and analysis issues in quantitative proteomics studies. Proteomics 7(Suppl 1):42–50.

    Article  PubMed  CAS  Google Scholar 

  3. Lau KW, Jones AR, Swainston N, Siepen JA, Hubbard SJ. (2007) Capture and analysis of quantitative proteomic data. Proteomics 7:2787–2799.

    Article  PubMed  CAS  Google Scholar 

  4. Matthiesen R. (2007) Methods, algorithms and tools in computational proteomics: a practical point of view. Proteomics 7: 2815–2832.

    Article  PubMed  CAS  Google Scholar 

  5. Julkar S, Regnier F. (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3:350–363.

    Article  CAS  Google Scholar 

  6. Bronstrup M. (2004) Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev Proteomics 1:503–512.

    Article  PubMed  Google Scholar 

  7. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386.

    Article  PubMed  CAS  Google Scholar 

  8. Mirzaei H, McBee J, Watts J, Aebersold R. (2007) Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Molecular & Cellular Proteomics 7:813–823, 2008.

    Google Scholar 

  9. Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ. (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1:1029–1043.

    Article  PubMed  CAS  Google Scholar 

  10. Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ. (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6:1416–1427.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson L, Hunter CL. (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588.

    PubMed  CAS  Google Scholar 

  12. Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW. (2004) Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 3: 235–244.

    Article  PubMed  CAS  Google Scholar 

  13. Kirkpatrick DS, Gerber SA, Gygi SP. (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35:265–273.

    Article  PubMed  CAS  Google Scholar 

  14. Han DK, Eng J, Zhou H, Aebersold R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19:946–951.

    Article  PubMed  CAS  Google Scholar 

  15. Aggarwal K, Choe LH, Lee KH. (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5:112–120.

    Article  PubMed  CAS  Google Scholar 

  16. Shadforth IP, Dunkley TP, Lilley KS, Bessant C. (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6:145.

    Article  PubMed  CAS  Google Scholar 

  17. Matthiesen R. (2006) Extracting monoisotopic single-charge peaks from liquid chromatography-electrospray ionization-mass spectrometry. Methods Mol Biol 367: 37–48.

    Google Scholar 

  18. Meija J, Caruso JA. (2004) Deconvolution of isobaric interferences in mass spectra. J Am Soc Mass Spectrom 15:654–658.

    Article  PubMed  CAS  Google Scholar 

  19. MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR, 3rd. (2003) A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal Chem 75:6912–6921.

    Article  PubMed  CAS  Google Scholar 

  20. Li XJ, Zhang H, Ranish JA, Aebersold R. (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75:6648–6657.

    Article  PubMed  CAS  Google Scholar 

  21. Matthiesen R. (2006) Virtual expert mass spectrometrist v3.0: an integrated tool for proteome analysis. Methods Mol Biol 367:121–138.

    Google Scholar 

  22. Blagoev B, Mann M. (2006) Quantitative proteomics to study mitogen-activated protein kinases. Methods 40:243–250.

    Article  PubMed  CAS  Google Scholar 

  23. Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73:2836–2842.

    Article  PubMed  CAS  Google Scholar 

  24. Yao X, Afonso C, Fenselau C. (2003) Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J Proteome Res 2:147–152.

    Article  PubMed  CAS  Google Scholar 

  25. Mason CJ, Therneau TM, Eckel-Passow JE, Johnson KL, Oberg AL, Olson JE, Nair KS, Muddiman DC, Bergen HR, 3rd. (2007) A method for automatically interpreting mass spectra of 18O-labeled isotopic clusters. Mol Cell Proteomics 6:305–318.

    PubMed  CAS  Google Scholar 

  26. Eckel-Passow JE, Oberg AL, Therneau TM, Mason CJ, Mahoney DW, Johnson KL, Olson JE, Bergen HR, 3rd. (2006) Regression analysis for comparing protein samples with 16O/18O stable-isotope labeled mass spectrometry. Bioinformatics 22:2739–2745.

    Article  PubMed  CAS  Google Scholar 

  27. Ramos-Fernandez A, Lopez-Ferrer D, Vazquez J. (2007) Improved method for differential expression proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency. Mol Cell Proteomics 6:1274–1286.

    Article  PubMed  CAS  Google Scholar 

  28. Halligan BD, Slyper RY, Twigger SN, Hicks W, Olivier M, Greene AS. (2005) ZoomQuant: an application for the quantitation of stable isotope labeled peptides. J Am Soc Mass Spectrom 16:302–306.

    Article  PubMed  CAS  Google Scholar 

  29. Coursey J, Schwab D, Dragoset R. (2001) Atomic weights and isotopic compositions (version 2.3.1). National Institute of Standards and Technology, Gaithersburg, MD. Available at http://physicsnistgov/Comp

  30. Matthiesen R, Mutenda KE. (2006) Introduction to proteomics. Methods Mol Biol 367:1–36.

    Google Scholar 

  31. Snyder A (Ed.). (2001) Interpreting Protein Mass Spectra, A Comprehensive Resource. Oxford University Press, Oxford.

    Google Scholar 

  32. Mirgorodskaya O, Kozmin Y, Titov M, Körner R, Sönksen C, Roepstorff P (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun Mass Spectrom, 14:1226–1232.

    Google Scholar 

  33. Regnier FE, Julka S. (2006) Primary amine coding as a path to comparative proteomics. Proteomics 6:3968–3979.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang R, Sioma CS, Thompson RA, Xiong L, Regnier FE. (2002) Controlling deuterium isotope effects in comparative proteomics. Anal Chem 74:3662–3669.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang R, Regnier FE. (2002) Minimizing resolution of isotopically coded peptides in comparative proteomics. J Proteome Res 1:139–147.

    Article  PubMed  CAS  Google Scholar 

  36. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C. (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904.

    Article  PubMed  CAS  Google Scholar 

  37. Shadforth I, Crowther D, Bessant C. (2005) Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines. Proteomics 5:4082–4095.

    Article  PubMed  CAS  Google Scholar 

  38. Laderas T, Bystrom C, McMillen D, Fan G, McWeeney S. (2007) TandTRAQ: an open-source tool for integrated protein identification and quantitation. Bioinformatics 23:3394–3396.

    Article  PubMed  CAS  Google Scholar 

  39. Yu CY, Tsui YH, Yian YH, Sung TY, Hsu WL. (2007) The Multi-Q web server for multiplexed protein quantitation. Nucleic Acids Res 35:W707–W712.

    Article  PubMed  Google Scholar 

  40. Lin WT, Hung WN, Yian YH, Wu KP, Han CL, Chen YR, Chen YJ, Sung TY, Hsu WL. (2006) Multi-Q: a fully automated tool for multiplexed protein quantitation. J Proteome Res 5:2328–2338.

    Article  PubMed  CAS  Google Scholar 

  41. Matthiesen R, Trelle MB, Hojrup P, Bunkenborg J, Jensen ON. (2005) VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res 4:2338–2347.

    Article  PubMed  CAS  Google Scholar 

  42. Beck HC, Nielsen EC, Matthiesen R, Jensen LH, Sehested M, Finn P, Grauslund M, Hansen AM, Jensen ON. (2006) Quantitative proteomic analysis of post-translational modifications of human histones. Mol Cell Proteomics 5:1314–1325.

    Article  PubMed  CAS  Google Scholar 

  43. Katajamaa M, Miettinen J, Oresic M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636.

    Article  PubMed  CAS  Google Scholar 

  44. Katajamaa M, Oresic M. (2005) Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6:179.

    Article  PubMed  CAS  Google Scholar 

  45. Li XJ, Yi EC, Kemp CJ, Zhang H, Aebersold R. (2005) A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Mol Cell Proteomics 4:1328–1340.

    Article  PubMed  CAS  Google Scholar 

  46. Kohlbacher O, Reinert K, Gropl C, Lange E, Pfeifer N, Schulz-Trieglaff O, Sturm M. (2007) TOPP – the OpenMS proteomics pipeline. Bioinformatics 23:e191–e197.

    Article  PubMed  CAS  Google Scholar 

  47. Jaffe JD, Mani DR, Leptos KC, Church GM, Gillette MA, Carr SA. (2006) PEPPeR, a platform for experimental proteomic pattern recognition. Mol Cell Proteomics 5:1927–1941.

    Article  PubMed  CAS  Google Scholar 

  48. Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, May D, Eng J, Fang R, Lin C, et al. (2006) A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22:1902–1909.

    Article  PubMed  CAS  Google Scholar 

  49. Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY, Vitek O, Aebersold R, Muller M. (2007) SuperHirn – a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7:3470–3480.

    Article  PubMed  CAS  Google Scholar 

  50. Wehofsky M, Hoffmann R, Hubert M, Spengler B. (2001) Isotopic deconvolution of matrix-assisted laser desorption/ionization mass spectra for substances-class specific analysis of complex samples. Eur J Mass Spectrom 7:39–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for RM was provided from Ramon y Cajal (RYC-2006-001446) and Fundação para a Ciência e a Tecnologia, Programa CIÊNCIA 2007 (C2007-IPATIMUP/AA2). Ana Sofia Carvalho gratefully thanks Fundação para a Ciência e a Tecnologia for a postdoctoral fellowship (SFRH/BPD/36912/2007).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matthiesen, R., Carvalho, A.S. (2010). Methods and Algorithms for Relative Quantitative Proteomics by Mass Spectrometry. In: Matthiesen, R. (eds) Bioinformatics Methods in Clinical Research. Methods in Molecular Biology, vol 593. Humana Press. https://doi.org/10.1007/978-1-60327-194-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-194-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-193-6

  • Online ISBN: 978-1-60327-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics