Skip to main content

Methylation Analysis by DNA Immunoprecipitation (MeDIP)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 556))

Abstract

Alteration in epigenetic regulation of gene expression is a common event in human cancer and developmental disease. CpG island hypermethylation and consequent gene silencing is observed for many genes involved in a diverse range of functions and pathways that become deregulated in the disease state. Comparative profiling of the methylome is therefore useful in disease gene discovery. The ability to identify epigenetic alterations on a global scale is imperative to understanding the patterns of gene silencing that parallel disease progression. Methylated DNA immunoprecipitation (MeDIP) is a technique that isolates methylated DNA fragments by immunoprecipitating with 5′-methylcytosine-specific antibodies. The enriched methylated DNA can then be analyzed in a locus-specific manner using PCR assay or in a genome-wide fashion by comparative genomic hybridization against a sample without MeDIP enrichment. This article describes the detailed protocol for MeDIP and hybridization of MeDIP DNA to a whole-genome tiling path BAC array.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Esteller M, Herman JG. (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 196, 1–7.

    Article  PubMed  CAS  Google Scholar 

  2. Feinberg AP. (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440.

    Article  PubMed  CAS  Google Scholar 

  3. Ozanne SE, Constancia M. (2007) Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab. 3, 539–546.

    Article  PubMed  CAS  Google Scholar 

  4. Shames DS, Minna JD, Gazdar AF. (2007) DNA methylation in health, disease, and cancer. Curr Mol Med. 7, 85–102.

    Article  PubMed  CAS  Google Scholar 

  5. Jones PA, Baylin SB. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3, 415–428.

    Article  PubMed  CAS  Google Scholar 

  6. Feinberg AP, Ohlsson R, Henikoff S. (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet. 7, 21–33.

    Article  PubMed  CAS  Google Scholar 

  7. Glasspool RM, Teodoridis JM, Brown R. (2006) Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer. 94, 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  8. Chekhun VF, Lukyanova NY, Kovalchuk O, Tryndyak VP, Pogribny IP. (2007) Epigenetic profiling of multidrug-resistant human MCF-7 breast adenocarcinoma cells reveals novel hyper- and hypomethylated targets. Mol Cancer Ther. 6, 1089–1098.

    Article  PubMed  CAS  Google Scholar 

  9. Shames DS, Girard L, Gao B, Sato M, Lewis CM, Shivapurkar N, Jiang A, Perou CM, Kim YH, Pollack JR, Fong KM, Lam CL, et al. (2006) A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med. 3, e486.

    Article  PubMed  Google Scholar 

  10. Gryn J, Zeigler ZR, Shadduck RK, Lister J, Raymond JM, Sbeitan I, Srodes C, Meisner D, Evans C. (2002) Treatment of myelodysplastic syndromes with 5-azacytidine. Leuk Res. 26, 893–897.

    Article  PubMed  CAS  Google Scholar 

  11. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 37, 853–862.

    Article  PubMed  CAS  Google Scholar 

  12. Wilson IM, Davies JJ, Weber M, Brown CJ, Alvarez CE, MacAulay C, Schubeler D, Lam WL. (2006) Epigenomics: mapping the methylome. Cell Cycle 5, 155–158.

    Article  PubMed  CAS  Google Scholar 

  13. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89, 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalgo ML, Liang G, Spruck CH, 3rd, Zingg JM, Rideout WM, 3rd, Jones PA. (1997) Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res. 57, 594–599.

    PubMed  CAS  Google Scholar 

  15. Huang TH, Laux DE, Hamlin BC, Tran P, Tran H, Lubahn DB. (1997) Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res. 57, 1030–1034.

    PubMed  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  17. Coe BP, Ylstra B, Carvalho B, Meijer GA, Macaulay C, Lam WL. (2007) Resolving the resolution of array CGH. Genomics 89, 647–653.

    Article  PubMed  CAS  Google Scholar 

  18. Khojasteh M, Lam WL, Ward RK, MacAulay C. (2005) A stepwise framework for the normalization of array CGH data. BMC Bioinformatics 6, 274.

    Article  PubMed  Google Scholar 

  19. Branham WS, Melvin CD, Han T, Desai VG, Moland CL, Scully AT, Fuscoe JC. (2007) Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements. BMC Biotechnol. 7, 8.

    Article  PubMed  Google Scholar 

  20. Chi B, DeLeeuw RJ, Coe BP, MacAulay C, Lam WL. (2004) SeeGH – a software tool for visualization of whole genome array comparative genomic hybridization data. BMC Bioinformatics. 5, 13.

    Article  PubMed  Google Scholar 

  21. Chari R, Lockwood WW, Coe BP, Chu A, Macey D, Thomson A, Davies JJ, MacAulay C, Lam WL. (2006) SIGMA: a system for integrative genomic microarray analysis of cancer genomes. BMC Genomics 7, 324.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Bradley Coe, Chad Malloff, and Spencer Watson for useful discussion and assistance with this manuscript. This work was supported by funds from the Canadian Institutes for Health Research, Canadian Breast Cancer Research Alliance, Genome Canada/British Columbia, and National Institute of Dental and Craniofacial Research (NIDCR) grant R01 DE15965.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vucic, E.A., Wilson, I.M., Campbell, J.M., Lam, W.L. (2009). Methylation Analysis by DNA Immunoprecipitation (MeDIP). In: Pollack, J. (eds) Microarray Analysis of the Physical Genome. Methods in Molecular Biology™, vol 556. Humana Press. https://doi.org/10.1007/978-1-60327-192-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-192-9_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-191-2

  • Online ISBN: 978-1-60327-192-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics