Skip to main content

Model of Neonatal Focal Cerebral Ischemia-Reperfusion

  • Protocol
Animal Models of Acute Neurological Injuries

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2752 Accesses

It has become clear that susceptibility to hypoxic-ischemic, excitotoxic, and oxidative insults is increased at specific stages of postnatal brain maturation, affecting both the acute and lasting injury patterns seen after the insult. For decades, a model of hypoxia-ischemia in postnatal days 7–9 (P7–P9) was the only rodent model relevant to ischemic brain injury in the neonate. This model is more likely to mimic global hypoxic-ischemic encephalopathy rather that focal transient ischemia of a single artery, such as the middle cerebral artery (MCA). To study the mechanisms of arterial pediatric stroke, a transient MCA occlusion model was first developed in juvenile rats. Since focal occlusion of the MCA is more commonly seen in term human babies than children and brain maturation affects the response to cerebral ischemia, we developed a transient MCA occlusion in P7 rats to satisfy the need for age-appropriate stroke models. We produced a series of models of different stroke severity by varying the duration of MCA occlusion and the age of the animals. In this chapter, we will describe in detail surgical procedures to induce MCA occlusion, ways to ascertain that the procedure is successful, and discuss factors and limitations that can affect short and longerterm injury outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. deVeber G, Roach ES, Riela AR, Wiznitzer M. Stroke in children: recognition, treatment, and future directions. Semin Pediatr Neurol 2000; 7:309–17.

    Article  Google Scholar 

  2. Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999; 283:70–4.

    Article  PubMed  CAS  Google Scholar 

  3. Olney JW, Wozniak DF, Jevtovic-Todorovic V, Farber NB, Bittigau P, Ikonomidou C. Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol 2002; 12:488–98.

    PubMed  CAS  Google Scholar 

  4. Sheldon RA, Jiang X, Francisco C, et al. Manipulation of antioxidant pathways in neonatal murine brain. Pediatr Res 2004; 56:656–62.

    Article  PubMed  CAS  Google Scholar 

  5. Vannucci RC, Vannucci SJ. Glucose metabolism in the developing brain. Semin Perinatol 2000; 24:107–15.

    Article  PubMed  CAS  Google Scholar 

  6. Vannucci SJ, Simpson IA. Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 2003; 285:E1127–34.

    PubMed  CAS  Google Scholar 

  7. Ikonomidou C, Mosinger JL, Salles KS, Labruyere J, Olney JW. Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci 1989; 9:2809–18.

    PubMed  CAS  Google Scholar 

  8. McDonald JW, Johnston M V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research. Brain Research Reviews 1990; 15:41–70.

    Article  PubMed  Google Scholar 

  9. Bickler PE, Fahlman CS, Ferriero DM. Hypoxia increases calcium flux through cortical neuron glutamate receptors via protein kinase C. J Neurochem 2004; 88:878–84.

    Article  PubMed  CAS  Google Scholar 

  10. Aspberg A, Tottmar O. Development of antioxidant enzymes in rat brain and in reag-gregation culture of fetal brain cells. Brain Res Dev Brain Res 1992; 66:55–8.

    Article  PubMed  CAS  Google Scholar 

  11. Fullerton HJ, Ditelberg JS, Chen SF, et al. Copper/zinc superoxide dismutase trans-genic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia. Ann Neurol 1998; 44:357–64.

    Article  PubMed  CAS  Google Scholar 

  12. Hedtjarn M, Mallard C, Hagberg H. Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab 2004; 24:1333–51.

    Article  PubMed  Google Scholar 

  13. Cheng Y, Deshmukh M, D'Costa A, et al. Caspase inhibitor affords neuroprotec-tion with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury [see comments]. J Clin Invest 1998; 101:1992–1999.

    Article  PubMed  CAS  Google Scholar 

  14. Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 2000; 20:1294–1300.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu C, Wang X, Xu F, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005; 12:162–76.

    Article  PubMed  CAS  Google Scholar 

  16. Rice JEd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981; 9:131–141.

    Article  PubMed  Google Scholar 

  17. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20:84–91.

    PubMed  CAS  Google Scholar 

  18. Ashwal S, Cole DJ, Osborne S, Osborne TN, Pearce WJ. A new model of neonatal stroke: reversible middle cerebral artery occlusion in the rat pup. Pediatr Neurol 1995; 12:191–6.

    Article  PubMed  CAS  Google Scholar 

  19. Derugin N, Ferriero DM, Vexler ZS. Neonatal reversible focal cerebral ischemia: a new model. Neurosci Res 1998; 32:349–353.

    Article  PubMed  CAS  Google Scholar 

  20. Derugin N, Wendland M, Muramatsu K, et al. Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rat. Stroke 2000; 31:1752–1761.

    PubMed  CAS  Google Scholar 

  21. Ferriero DM. Neonatal brain injury. N Engl J Med 2004; 351:1985–95.

    Article  PubMed  CAS  Google Scholar 

  22. Renolleau S, Aggoun-Zouaoui D, Ben-Ari Y, Charriaut-Marlangue C. A model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat: morphological changes indicative of apoptosis. Stroke 1998; 29:1454–60; discussion 1461.

    PubMed  CAS  Google Scholar 

  23. Manabat C, Han BH, Wendland M, et al. Reperfusion differentially induces caspase-3 activation in ischemic core and penumbra after stroke in immature brain. Stroke 2003; 34:207–13.

    Article  PubMed  CAS  Google Scholar 

  24. Fox C, Dingman A, Derugin N, et al. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2005; 25:1138–49.

    Article  PubMed  CAS  Google Scholar 

  25. Derugin N, Dingman A, Wendland M, Fox C, Vexler ZS. Magnetic Resonance Imaging as a Surrogate Measure for Histological Sub-Chronic Endpoint in a Neonatal Rat Stroke Model. Brain Res 2005; 1066:49–56.

    Article  PubMed  CAS  Google Scholar 

  26. Hagberg H, Wilson MA, Matsushita H, et al. PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. J Neurochem 2004; 90:1068–75.

    Article  PubMed  CAS  Google Scholar 

  27. van den Tweel ER, van Bel F, Kavelaars A, et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab 2005; 25:67–74.

    Article  Google Scholar 

  28. Dingman A, Lee SY, Derugin N, Wendland MF, Vexler ZS. Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient ischemia. Journal of Neurochemistry 2006; 96:1467–79.

    Article  PubMed  CAS  Google Scholar 

  29. Northington FJ, Graham EM, Martin LJ. Apoptosis in perinatal hypoxic-ischemic brain injury: How important is it and should it be inhibited? Brain Res Brain Res Rev 2005; 50:244–57.

    PubMed  CAS  Google Scholar 

  30. Mu D, Jiang X, Sheldon RA, et al. Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis 2003; 14:524–34.

    Article  PubMed  CAS  Google Scholar 

  31. Mu D, Chang YS, Vexler ZS, Ferriero DM. Hypoxia-inducible factor 1alpha and erythropoietin upregulation with deferoxamine salvage after neonatal stroke. Exp Neurol 2005.

    Google Scholar 

  32. Chang YS, Mu D, Wendland M, et al. Erythropoietin improves functional and histological outcome in neonatal stroke. Pediatr Res 2005; 58:106–11.

    Article  PubMed  CAS  Google Scholar 

  33. Denker S, Ji S, Lee SY, et al. Macrophages are Comprised of Resident Brain Microglia not Infiltrating Peripheral Monocytes Acutely after Neonatal Stroke. J Neurochem 2007; 100:893–904.

    Article  PubMed  CAS  Google Scholar 

  34. Ashwal S, Tone B, Tian HR, Chong S, Obenaus A. Comparison of two neonatal ischemic injury models using magnetic resonance imaging. Pediatr Res 2007; 61:9–14.

    Article  PubMed  Google Scholar 

  35. Ashwal S, Tone B, Tian HR, Chong S, Obenaus A. Serial magnetic resonance imaging in a rat pup filament stroke model. Exp Neurol 2006; 202:294–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Vexler, Z.S., Ferriero, D.M. (2009). Model of Neonatal Focal Cerebral Ischemia-Reperfusion. In: Chen, J., Xu, Z.C., Xu, XM., Zhang, J.H. (eds) Animal Models of Acute Neurological Injuries. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-60327-185-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-185-1_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-184-4

  • Online ISBN: 978-1-60327-185-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics