Skip to main content

Phage Production and Maintenance of Stocks, Including Expected Stock Lifetimes

  • Protocol
Bacteriophages

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 501))

Abstract

In microbiology, preservation of an archival stock or a “master stock” of a given microorganism is essential for many reasons including scientific research, conservation of the genetic resources and providing the foundation for several biotechnological processes. The objective is to preserve the initial characteristics of the microorganism and to avoid the genetic drift that occurs when the organism is maintained indefinitely in an actively growing state. The same holds true in phage biology and it is of particular interest when a collection of phages is to be maintained. The aim of this chapter is to provide phage biologists with general procedures to prepare and maintain bacteriophage stocks on a long-term basis. The protocols described below should be considered as general guidelines because although many phages and bacterial strains can be propagated and stored in these conditions, specific media and/or growth and storage conditions must be evaluated for each phage and bacterium. Since it was not the scope of this chapter to provide an exhaustive list of these particular conditions, we instead highlighted the main factors affecting phage amplification and storage. We hope this will help phage biologists to develop their own strategies for their preferred phages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sigler, L. (2004) Culture collections in Canada: perspectives and problems. Can. J. Plant. Pathol. 26, 39–47.

    Article  Google Scholar 

  2. Drake, J. W. (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. USA 88, 7160–7164.

    Article  CAS  PubMed  Google Scholar 

  3. Domingo, E., Sabo, D., Taniguchi, T., and Weissmann, C. (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13, 735–744.

    Article  CAS  PubMed  Google Scholar 

  4. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and VandePol, S. (1982) Rapid evolution of RNA genomes. Science 215, 1577–1585.

    Article  CAS  PubMed  Google Scholar 

  5. Steinhauer, D.A., and Holland, J.J. (1987) Rapid evolution of RNA viruses. Annu. Rev. Microbiol. 41, 409–433.

    Article  CAS  PubMed  Google Scholar 

  6. Drake, J. W., and Holland, J. J. (1999) Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 96, 13910–13913.

    Article  CAS  PubMed  Google Scholar 

  7. Casjens, S. (2003) Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49, 277–300.

    Article  CAS  PubMed  Google Scholar 

  8. Brussow, H., and Desiere, F. (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages Mol. Microbiol. 39, 213–222.

    Article  CAS  PubMed  Google Scholar 

  9. Carne, H. R., and Greaves, R. I. (1974) Preservation of corynebacteriophages by freeze-drying J. Hyg. (Lond) 72, 467–470.

    Article  CAS  Google Scholar 

  10. Clark, W. A. (1962) Comparison of several methods for preserving bacteriophages. Appl. Microbiol. 10, 466–471.

    CAS  PubMed  Google Scholar 

  11. Mendez, J., Jofre, J., Lucena, F., Contreras, N., Mooijman, K., and Araujo, R. (2002) Conservation of phage reference materials and water samples containing bacteriophages of enteric bacteria. J. Virol. Methods 106, 215–224.

    Article  CAS  PubMed  Google Scholar 

  12. Zierdt, C. H. (1959) Preservation of staphylococcal bacteriophage by means of lyophilization Am. J. Clin. Pathol. 31, 326–331.

    CAS  PubMed  Google Scholar 

  13. Clark, W. A., and Klein, A. (1966) The stability of bacteriophages in long term storage at liquid nitrogen temperatures. Cryobiology 3, 68–75.

    Article  CAS  PubMed  Google Scholar 

  14. Engel, H. W., Smith, L., and Berwald, L. G. (1974) The preservation of mycobacteriophages by means of freeze drying. Am. Rev. Respir. Dis. 109, 561–566.

    CAS  PubMed  Google Scholar 

  15. Ackermann, H.-W., Tremblay, D., and Moineau, S. (2004) Long-term bacteriophage preservation. World Federation for Culture Collections Newsletter. 38, 35–40.

    Google Scholar 

  16. Zierdt, C. H. (1988) Stabilities of lyophilized Staphylococcus aureus typing bacteriophages Appl. Environ. Microbiol. 54, 2590.

    CAS  PubMed  Google Scholar 

  17. Clark, W. A., Horneland, W., and Klein, A. G. (1962) Attempts to freeze some bacteriophages to ultralow temperatures. Appl. Microbiol. 10, 463–465.

    CAS  PubMed  Google Scholar 

  18. Clark, W. A., and Geary, D. (1973) Preservation of bacteriophages by freezing and freeze-drying. Cryobiology 10, 351–360.

    Article  CAS  PubMed  Google Scholar 

  19. Davies, J. D., and Kelly, M. J. (1969) The preservation of bacteriophage H1 of Corynebacterium ulcerans U103 by freeze-drying. J. Hyg. (Lond) 67, 573–583.

    Article  CAS  Google Scholar 

  20. Lillehaug, D. (1997) An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. J. Appl. Microbiol. 83, 85–90.

    Article  CAS  PubMed  Google Scholar 

  21. Hammes, W., Schleifer, K. H., and Kandler, O. (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116, 1029–1053.

    CAS  PubMed  Google Scholar 

  22. Holo, H., and Nes, I. F. (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55, 3119–3123.

    CAS  PubMed  Google Scholar 

  23. Cruz-Rodz, A. L., and Gilmore, M. S. (1990) High efficiency introduction of plasmid DNA into glycine treated Enterococcus faecalis by electroporation. Mol. Gen. Genet. 224, 152–154.

    Article  CAS  PubMed  Google Scholar 

  24. Guttman, B., Raya, R., and Kutter, E. (2005) Basic phage biology, in “Bacteriophages: biology and applications” (Kutter, E., and Sulakvelidze, A., Eds.), CRC Press, Boca Raton, pp. 29–66.

    Google Scholar 

  25. Kutter, E., Raya, R., and Carlson, K. (2005) Molecular mechanisms of phage infection, in “Bacteriophages: biology and applications” (Kutter, E., and Sulakvelidze, A., Eds.), CRC Press, Boca Raton, pp. 165–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fortier, LC., Moineau, S. (2009). Phage Production and Maintenance of Stocks, Including Expected Stock Lifetimes. In: Clokie, M.R., Kropinski, A.M. (eds) Bacteriophages. Methods in Molecular Biology™, vol 501. Humana Press. https://doi.org/10.1007/978-1-60327-164-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-164-6_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-682-5

  • Online ISBN: 978-1-60327-164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics