Skip to main content

Toward the Prediction of Class I and II Mouse Major Histocompatibility Complex-Peptide-Binding Affinity

In Silico Bioinformatic Step-by-Step Guide Using Quantitative Structure-Activity Relationships

  • Protocol
Immunoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 409))

Summary

Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide–major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods—a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method—which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities ( IC50 ) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide–MHC affinity.

We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A * 0101, HLA-A * 0201, HLA-A * 0202, HLA-A * 0203, HLA-A * 0206, HLA-A * 0301, HLA-A * 1101, HLA-A * 3101, HLA-A * 6801, HLA-A * 6802, HLA-B * 3501, H2-Kk, H2-Kb, H2-Db HLA-DRB1 * 0101, HLA-DRB1 * 0401, HLA-DRB1 * 0701, I-A b , I-A d , I-A k , I-A s , I-E d , and I-E k.

In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kubinyi, H., and Kehrhahn, O.H., 1976, Quantitative structure-activity relationships. 3.1 A comparison of different Free-Wilson models. J. Med. Chem.19: 1040–1049.

    Article  CAS  PubMed  Google Scholar 

  2. Doytchinova, I.A., and Flower, D.R., 2003, Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction. Bioinformatics19: 2263–2270.

    Article  CAS  PubMed  Google Scholar 

  3. Doytchinova, I.A., Blythe, M.J., and Flower, D.R., 2002, Additive method for the prediction of protein-peptide binding affinity. Application to the MHC class I molecule HLA-A*0201. J. Proteome Res.1: 263–272.

    Article  CAS  PubMed  Google Scholar 

  4. Guan, P., Doytchinova, I.A., and Flower, D.R., 2003, HLA-A3 supermotif defined by quantitative structure-activity relationship analysis. Protein Eng.16: 11–18.

    Article  CAS  PubMed  Google Scholar 

  5. Hattotuwagama, C.K., Guan, P., Doytchinova, I.A., Zygouri, C., and Flower, D.R., 2004, Quantitative online prediction of peptide binding to the major histocomp-atibility comlex. J. Mol. Graph. Model..22: 195–207.

    Article  CAS  PubMed  Google Scholar 

  6. Klebe, G., Abraham, U., and Mietzner, T., 1994, Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem.37: 4130–4146.

    Article  CAS  PubMed  Google Scholar 

  7. Klebe, G., and Abraham, U., 1999, Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput. Aided Mol. Des.13: 1–10.

    Article  CAS  PubMed  Google Scholar 

  8. Bohm, M., Sturzebecher, J., and Klebe, G., 1999, Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J. Med. Chem.42: 458–477.

    Article  CAS  PubMed  Google Scholar 

  9. Stahle, L., and Wold, S., 1988, Multivariate data analysis and experimental design in biomedical research. Prog. Med. Chem.25: 291–338.

    Article  CAS  PubMed  Google Scholar 

  10. Doytchinova, I.A., and Flower, D.R., 2002, Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: a three-dimensional quantitative structure-activity relationship study. Proteins48: 505–518.

    Article  CAS  PubMed  Google Scholar 

  11. Doytchinova, I.A., and Flower, D.R., 2002, A comparative molecular similarity index analysis (CoMSIA) study identifies an HLA-A2 binding supermotif. J. Comput. Aided Mol. Des.16: 535–544.

    Article  CAS  PubMed  Google Scholar 

  12. Guan, P., Doytchinova, I.A., and Flower, D.R., 2003, A comparative molecular similarity indices (CoMSIA) study of peptide binding to the HLA-A3 superfamily. Bioorg. Med. Chem.11: 2307–2311.

    Article  CAS  PubMed  Google Scholar 

  13. Wold, S., 1995, PLS for multivariate linear modelling. Chemometric Methods In Molecular Design (H. van de Waterbeemd, ed.), VCH, Weinheim, pp. 195–218.

    Google Scholar 

  14. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., and Stewart, J.J.P., 1985, AM1: a new general purpose quantum mechanical molecular model J. Am. Chem. Soc. 107: 3902–3909.

    Article  CAS  Google Scholar 

  15. Young, D., 2001, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. Wiley Inter-Science, New York, p. 243.

    Google Scholar 

  16. Blythe, M., Doytchiniva, I.A., and Flower, D.R. 2002, JenPep: a database of quantitative functional peptide data for immunology. Bioinformatics18: 434–439.

    Article  CAS  PubMed  Google Scholar 

  17. McSparron, H., Blythe, M.J., Zygouri, C., Doytchinova, I.A., and Flower, D.R., 2003, JenPep: a novel computational information resource for immunology and vaccinology. J. Chem. Inf. Comput. Sci.43: 1276–1287.

    CAS  PubMed  Google Scholar 

  18. Ruppert, J., Sidney, J., Celis, E., Kubo, R.T., Grey, H.M., and Sette, A., 1993, Prominent role of secondary anchor residues in peptide binding to HLA-A*0201 molecules. Cell74: 929–937.

    Article  CAS  PubMed  Google Scholar 

  19. Sette, A., Sidney, J., del Guercio, M.-F., Southwood, S., Ruppert, J., Dalberg, C., Grey, H.M., and Kubo, R.T., 1994, Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Mol. Immunol.31: 813–822.

    Article  CAS  PubMed  Google Scholar 

  20. Sybyl 6.9, Tripos Inc., 1699. Hanley Road, St. Louis, MO 63144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Hattotuwagama, C.K., Doytchinova, I.A., Flower, D.R. (2007). Toward the Prediction of Class I and II Mouse Major Histocompatibility Complex-Peptide-Binding Affinity. In: Flower, D.R. (eds) Immunoinformatics. Methods in Molecular Biology™, vol 409. Humana Press. https://doi.org/10.1007/978-1-60327-118-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-118-9_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-699-3

  • Online ISBN: 978-1-60327-118-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics