Spatial Localization of PtdInsP2 in Phase-Separated Giant Unilamellar Vesicles with a Fluorescent PLC-delta 1 PH Domain

  • Xavier MuletEmail author
  • Erika Rosivatz
  • Ka Kei Ho
  • Béatrice L.L.E. Gauthé
  • Oscar Ces
  • Richard H. Templer
  • Rudiger Woscholski
Part of the Methods in Molecular Biology book series (MIMB, volume 462)


This chapter describes a method for the preparation of giant unilamellar vesicles containing phosphatidylinositol 4,5-bisphosphate that are larger than 20 μm in size. The phospholipids composition of the vesicular membrane is such that fluid lamellar and liquid-ordered or gel phases are formed and separate within the confines of one vesicle. It outlines the preparation of a protein fluorescent label, pleckstrin homology domain from phospholipase C-delta 1, that binds specifically to phosphatidylinositol 4,5-bisphosphate. Using fluorescence microscopy, the presence and spatial position of this phosphorylated phosphatidylinositol lipid on the lipid membrane have been located with the pleckstrin homology domain. We show that phosphatidylinositol 4,5-bisphosphate and the phospholipase C-delta 1 pleckstrin homology domain are located to the fluid phase of the vesicle membrane. This approach can therefore show how membrane physical properties can affect enzyme binding to phosphatidylinositol 4,5-bisphosphate and thus further the understanding of important membrane processes such as endocytosis.


Giant unilamellar vesicles phosphatidylinositol 4,5-bisphosphate phospholipase C-delta 1 PH domain 



bovine serum albumin;






giant unilamellar vesicle;




pleckstrin homology;


phosphatidylinositol 4,5-bisphosphate;


phospholipase C.


  1. 1.
    Ces O, Mulet X. Physical coupling between lipids and proteins: A paradigm for cellular control. Signal Transduc 2006;6:112–32.CrossRefGoogle Scholar
  2. 2.
    Zimmerberg J, Kozlov MM. How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 2005;7:9–19.CrossRefGoogle Scholar
  3. 3.
    McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 2005;438:590–6.PubMedCrossRefGoogle Scholar
  4. 4.
    van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 2004;1666:275–88.CrossRefGoogle Scholar
  5. 5.
    Seddon JM. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1990;1031:1–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Dobereiner HG, Kas J, Noppl D, Sprenger I, Sackmann E. Budding and fission of vesicles. Biophys J 1993;65:1396–403.PubMedCrossRefGoogle Scholar
  7. 7.
    Baumgart T, Hess ST, Webb WW. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 2003;425:821–4.PubMedCrossRefGoogle Scholar
  8. 8.
    de Almeida RF, Fedorov A, Prieto M. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: Boundaries and composition of lipid rafts. Biophys J 2003;85:2406–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Yagisawa H, Hirata M, Kanematsu T, Watanabe Y, Ozaki S, Sakuma K, Tanaka H, Yabuta N, Kamata H, Hirata H, et al. Expression and characterization of an inositol 1,4,5-trisphosphate binding domain of phosphatidylinositol-specific phospholipase C-delta 1. J Biol Chem 1994;269:20179–88.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xavier Mulet
    • 1
    Email author
  • Erika Rosivatz
  • Ka Kei Ho
  • Béatrice L.L.E. Gauthé
  • Oscar Ces
  • Richard H. Templer
  • Rudiger Woscholski
  1. 1.Chemical Biology CentreImperial CollegeLondonUK

Personalised recommendations