Skip to main content

Analysis of Phosphatidylinositol 3,4,5 Trisphosphate 5-Phosphatase Activity by in vitro and in vivo Assays

  • Protocol
  • First Online:
Lipid Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 462))

Abstract

Phosphatidylinositol 3,4,5 trisphosphate [PtdIns(3,4,5)P 3] is a potent membrane-bound signaling molecule transiently synthesized by phosphoinositide 3-kinase (PI3-kinase) in response to extracellular agonists. PtdIns(3,4,5)P 3 signals need to be strictly controlled. PtdIns(3,4,5)P 3 recruits and binds effectors that function in oncogenic signaling pathways. PtdIns(3,4,5)P 3 activates cell proliferation, growth, and migration as well as regulating insulin signaling. The inositol polyphosphate 5-phosphatase family of enzymes dephosphorylate and thereby modulate PtdIns(3,4,5)P 3 levels, attenuating PI3-kinase-dependent signaling. PtdIns(3,4,5)P 3 5-phosphatase enzyme activity can be assessed in vitro by analysis of the hydrolysis of radiolabeled or fluorescently labeled PtdIns(3,4,5)P 3 and in vivo by visualization of the recruitment and turnover of the PtdIns(3,4,5)P 3-specific biosensor GFP-PH/ARNO or other PtdIns(3,4,5)P 3 binding proteins at the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-phosphatase: Inositol:

polyphosphate 5-phosphatase;

DMSO: Dimethyl:

sulfoxide;

PI3-kinase: Phosphoinositide:

3-kinase;

PH: Pleckstrin:

homology;

PtdIns(4,5)P 2: Phosphatidylinositol:

4,5 bisphosphate;

PtdIns(3,4,5)P 3: Phosphatidylinositol:

3,4,5 trisphosphate;

PtdSer::

Phosphatidylserine;

TLC::

Thin layer chromatography.

References

  1. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655–7.

    Article  PubMed  CAS  Google Scholar 

  2. Czech MP. PIP2 and PIP3: Complex roles at the cell surface. Cell 2000;100:603–6.

    Article  PubMed  CAS  Google Scholar 

  3. Salim K, Bottomley MJ, Querfurth E, Zvelebil MJ, Gout I, Scaife R, Margolis RL, Gigg R, Smith CI, Driscoll PC, Waterfield MD, Panayotou G. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J 1996;15:6241–50.

    PubMed  CAS  Google Scholar 

  4. Venkateswarlu K, Oatey PB, Tavare JM, Cullen PJ. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol 1998;8:463–6.

    Article  PubMed  CAS  Google Scholar 

  5. Venkateswarlu K, Gunn-Moore F, Oatey PB, Tavare JM, Cullen PJ. Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP-ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires activation of phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochem J 1998;335(Pt 1):139–46.

    PubMed  CAS  Google Scholar 

  6. Varnai P, Rother KI, Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 1999;274:10983–9.

    Article  PubMed  CAS  Google Scholar 

  7. Varnai P, Bondeva T, Tamas P, Toth B, Buday L, Hunyady L, Balla T. Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P 3 suggest their interaction with protein binding partners. J Cell Sci 2005;118:4879–88.

    Article  PubMed  CAS  Google Scholar 

  8. Mitchell CA, Gurung R, Kong AM, Dyson JM, Tan A, Ooms LM. Inositol polyphosphate 5-phosphatases: Lipid phosphatases with flair. IUBMB Life 2002;53:25–36.

    Article  PubMed  CAS  Google Scholar 

  9. Whisstock JC, Wiradjaja F, Waters JE, Gurung R. The structure and function of catalytic domains within inositol polyphosphate 5-phosphatases. IUBMB Life 2002;53:15–23.

    Article  PubMed  CAS  Google Scholar 

  10. Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R. Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett 2004;576:9–13.

    Article  PubMed  CAS  Google Scholar 

  11. Dyson JM, Kong AM, Wiradjaja F, Astle MV, Gurung R, Mitchell CA. The SH2 domain containing inositol polyphosphate 5-phosphatase-2: SHIP2. Int J Biochem Cell Biol 2005;37:2260–5.

    Article  CAS  Google Scholar 

  12. Lowe M. Structure and function of the Lowe syndrome protein OCRL1. Traffic 2005;6:711–9.

    Article  PubMed  CAS  Google Scholar 

  13. Ooms LM, Fedele CG, Astle MV, Ivetac I, Cheung V, Pearson RB, Layton MJ, Forrai A, Nandurkar HH, Mitchell CA. The inositol polyphosphate 5-phosphatase, PIPP, is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation. Mol Biol Cell 2006;17:607–22.

    Article  PubMed  CAS  Google Scholar 

  14. Hama H, Torabinejad J, Prestwich GD, DeWald DB. Measurement and immunofluorescence of cellular phosphoinositides. Methods Mol Biol 2004;284:243–58.

    PubMed  CAS  Google Scholar 

  15. Layton MJ, Harpur AG, Panayotou G, Bastiaens PI, Waterfield MD. Binding of a diphosphotyrosine-containing peptide that mimics activated platelet-derived growth factor receptor beta induces oligomerization of phosphatidylinositol 3-kinase. J Biol Chem 1998;273:33379–85.

    Article  PubMed  CAS  Google Scholar 

  16. Kimber WA, Trinkle-Mulcahy L, Cheung PC, Deak M, Marsden LJ, Kieloch A, Watt S, Javier RT, Gray A, Downes CP, Lucocq JM, Alessi DR. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P 2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 2002;361:525–36.

    Article  PubMed  CAS  Google Scholar 

  17. Abramoff M, Magelhaes P, Ram S. Image processing with ImageJ. Biophoton Int 2004;11:36–42.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tamas Balla for the GFP-PH/ARNO construct, Dr. Meredith Layton for the recombinant PI3-kinase, and Drs. Absorn Sriratana and Richard Huysmans for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina A. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ooms, L.M., Dyson, J.M., Kong, A.M., Mitchell, C.A. (2009). Analysis of Phosphatidylinositol 3,4,5 Trisphosphate 5-Phosphatase Activity by in vitro and in vivo Assays. In: Larijani, B., Woscholski, R., Rosser, C. (eds) Lipid Signaling Protocols. Methods in Molecular Biology, vol 462. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-115-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-115-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-727-3

  • Online ISBN: 978-1-60327-115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics