Skip to main content

Artificial Neural Networks in Biology and Chemistry—The Evolution of a New Analytical Tool

  • Protocol
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 458))

Abstract

Once regarded as an eccentric and unpromising algorithm for the analysis of scientific data, the neural network has been developed in the last decade into a powerful computational tool. Its use now spans all areas of science, from the physical sciences and engineering to the life sciences and allied subjects. Applications range from the assessment of epidemiological data or the deconvolution of spectra to highly practical applications, such as the electronic nose. This introductory chapter considers briefly the growth in the use of neural networks and provides some general background in preparation for the more detailed chapters that follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierce, TH, Hohne, BA (eds) (1986) Artificial intelligence applications in chemistry. ACS Symposium Series 306, American Chemical Society, Washington, DC.

    Google Scholar 

  2. Goldberg, DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA.

    Google Scholar 

  3. Holland, JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

    Google Scholar 

  4. Bounds, DG (1987). New optimization methods from physics and biology. Nature, 329, 215–219.

    Article  Google Scholar 

  5. Zupan J, Gasteiger J (1991) Neural networks-a new method for solving chemical problems or just a passing phase? Anal Chim Acta 248:1–30.

    Article  CAS  Google Scholar 

  6. Zupan J, Gasteiger J (1993) Neural networks for chemists—an introduction. VCH, Weinheim.

    Google Scholar 

  7. Cartwright HM (1993). Applications of artificial intelligence in chemistry. Oxford University Press, Oxford.

    Google Scholar 

  8. Cartwright HM, Long RA (1993) Simultaneous optimization of flowshop sequencing and topology using genetic algorithms. Ind Eng Chem Res 32:2706–2713.

    Article  CAS  Google Scholar 

  9. Lahiri S, Stillman MJ (2000) Knowledge transfer: human experts to expert systems. In: Cartwright HM (ed.) Intelligent data analysis in science. Oxford University Press, Oxford, pp. 19–43.

    Google Scholar 

  10. Sharda R, Delen D (2006) Predicting box-office success of motion pictures with neural networks. Expert Systems with Applications 30:243–254.

    Article  Google Scholar 

  11. Wasserman PD (1989) Neural computing: theory and practice. Van Nostrand Reinhold, New York.

    Google Scholar 

  12. Sumpter BG, Getino C, Noid DW (1994) Theory and applications of neural computing in chemical science. Ann Rev Phys Chem 45:439–481.

    Article  CAS  Google Scholar 

  13. Peterson K (2000). Artificial neural networks and their use in chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley-VCH, New York, pp. 53–140.

    Chapter  Google Scholar 

  14. Eldred DV, Weikel CL, Jurs P, Kaiser KLE (1999) Prediction of fathead minnow acute toxicity or organic compounds from molecular structure. Chem Res Toxico 12:670–678.

    Article  CAS  Google Scholar 

  15. Pantakar SJ, Jurs PC (2000) Prediction of IC50 values for ACAT inhibitors from molecular structure. J Chem Inf Comput Sci 40:706–723.

    Google Scholar 

  16. Lucic B, Trinajstic N J (1999) Multivariate regression outperforms several robust architectures of neural networks in QSAR modelling. J Chem Inf Comput Sci 39:121–132.

    CAS  Google Scholar 

  17. So S-S, Karplus M J (1999) A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors. J Comput-Aided Mol Des 13:243–258.

    Article  CAS  PubMed  Google Scholar 

  18. Beck B, Glen R, Clark TJ (1996) The inhibition of α-chymotrypsin predicted using theoretically derived molecular properties. J Mol Graph 14:130–135.

    Article  CAS  PubMed  Google Scholar 

  19. Goodacre R, Kell DB, Bianchi G (1992) Neural networks and olive oil. Nature 359:594.

    Article  Google Scholar 

  20. Rezzi S, Axelson DE, Heberger K, Reniero F, Mariani C, Guillou C (2005) Classification of olive oils using high throughput flow 1H NMR fingerprinting with principal component analysis, linear discriminant analysis and probabilistic neural networks. Anal Chim Acta 552:13–24.

    Article  CAS  Google Scholar 

  21. O'Farrell M, Lewis E, Flanagan C, Lyons W, Jackman N (2005) Comparison of k-NN and neural network methods in the classification of spectral data from an optical fibre-based sensor system used for quality control in the food industry. Sensors and Actuators B 111–112:254–362.

    Google Scholar 

  22. Ozmen A, Tekce F, Ebeolgu MA, Tasaltin C, Ozturk ZZ (2006) Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network. Sensor and Accuators B 115:450–454.

    Article  Google Scholar 

  23. Dutta R, Morgan D, Baker N, Gardner JW, Hines EL (2005) Identification of Staphylococcus aureus infections in hospital environment: electronic nose based approach. Sensors and Actuators B 109, 355–362.

    Article  Google Scholar 

  24. Hodgins D, Simmonds D (1995) The electronic NOSE and its application to the manufacture of foods. J. Automated Chemistry 17:179–185.

    Article  CAS  Google Scholar 

  25. Auge J, Hauptmann P, Hartmann J, Rosler S, Lucklum R (1995) Versatile microcontrolled gas sensor array system using the quartz microbalance principle and pattern recognition methods. Sensors and Actuators B 26:181–186.

    Article  Google Scholar 

  26. Xing W-L, He X-W (1997) Crown ether-coated piezoelectric crystal sensor array for detection of organic vapour mixtures using several chemometric methods. Analyst 122:587–592.

    Article  CAS  Google Scholar 

  27. Lubal P, Koprivova H, Sedo O, Havel J, Lis S, But S (2006) Simultaneous determination of molybdenum (VI) and tungsten (VI) and its application in elemental analysis of polyoxometalates. Talanta 69:800–806.

    Article  CAS  PubMed  Google Scholar 

  28. Devillers J (2000) Prediction of toxicity of organophosphorus insecticides against the midge, Chironomus riparius, via a QSAR neural network model integrating environmental variable. Toxicol Methods 10:69–79.

    Article  CAS  Google Scholar 

  29. Cartwright HM (2002) Investigation of structure-biodegradability relationships in polychlorinated biphenyls using self-organising maps. Neural Comput & Applic 11:30–36.

    Article  Google Scholar 

  30. Zitko V (1991) Prediction of the biodegradability of organic chemicals by an artificial neural network. Chemosphere 23:305–312.

    Article  CAS  Google Scholar 

  31. Grover M, Singh B, Bakshi M, Singh S (2000) Quantitative structure-property relationships in pharmaceutical research-part 1. PSTT 3:28–35.

    CAS  Google Scholar 

  32. Viswanadhan VN, Ghose AK, Revankar GR, Robins R (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172.

    CAS  Google Scholar 

  33. Stud M (1993) Neural networks in medicinal chemistry:. encoding graphic structures and their prediction capability. In: VII congreso de la sociedad espanola de quimica terapeutica, September 28–30, Salamanca, Spain.

    Google Scholar 

  34. Caruana R, Schaffer JD (1988) Representation and hidden bias: gray vs. binary coding for genetic algorithms. In: Proc. Vth int. conf. on machine learning, Morgan Kaufmann, San Mateo, CA, pp. 132–161.

    Google Scholar 

  35. Cherqaoui D, Esseffar M, Zakarya D, Mesbah A, Villemin D (1998) Structure-selectivity relationships of MAO inhibitors using neural networks. ACH-Models Chem 135:79–92.

    CAS  Google Scholar 

  36. Burden FR (1996) Using artificial neural networks to predict biological activity from simple molecular structural considerations. Quant Struc-Act Relat 15:7–11.

    Article  CAS  Google Scholar 

  37. Halberstam NM, Baskin II, Palyulin VA, Zefirov NS (2003) Neural networks as a method for elucidating structure-property relationships for organic compounds. Uspekhi Khimii 72:706–727.

    Google Scholar 

  38. Jolliffe IT (1986) Principal components analysis. Springer-Verlag, New York.

    Google Scholar 

  39. Everitt BS (1993) Cluster analysis. Edward Arnold, London.

    Google Scholar 

  40. Goodacre R (2000) Applications of artificial neural networks to the analysis of multivariate data. In: Cartwright HM (ed.) Intelligent data analysis in science,. Oxford University Press, Oxford, pp. 123–152.

    Google Scholar 

  41. Jacobsson SP (1994) Feature extraction of polysaccharides by low-dimensional internal representation neural networks and infrared spectroscopy. Anal Chim Acta 291:19–27.

    Article  CAS  Google Scholar 

  42. Palmes PP, Usui S (2005) Robustness, evolvability and optimality of evolutionary neural networks. BioSystems 82:168–188.

    Article  CAS  PubMed  Google Scholar 

  43. Fritzke B (1995) Growing grid-a self-organizing network with constant neighborhood range and adaption strength. Neural Processing Letters 2:9–13.

    Article  Google Scholar 

  44. Blackmore J, Miikkulainen R (1995) Visualizing high-dimensional structure with the incremental grid growing network. In: Proc. XIIth internat. conf. on machine learning. Morgan Kaufmann, San Francisco, pp. 55–63.

    Google Scholar 

  45. Martinetz M, Schulten KJ (1991) A neural gas network learns topologies. In: Kohonen KMT, Simula O, Kangas J. (eds) Artificial neural networks. North Holland, Amsterdam, pp. 397–402.

    Google Scholar 

  46. Walker AJ, Cross SS, Harrison RF (1999) Visualisation of biomedical datasets by use of growing cell structure networks: a novel diagnostic classification technique. The Lancet 354:1518–1521.

    Article  CAS  Google Scholar 

  47. Wong JWH, Cartwright HM (2005) Deterministic projection by growing cell structure networks for visualization of high-dimensionality datasets. J Biomed Inform 38:322–330.

    Article  PubMed  Google Scholar 

  48. Wu Z, Yen G (2003) A SOM projection technique with the growing structure for visualising high-dimensional data. Int J Neural Systems 13:353–365.

    Article  Google Scholar 

  49. Fonseca AM, Biscaya JL, Aires-de-Sousa J, Lobo AM (2006) Geographical classification of crude oils by Kohonen self-organizing maps. Anal Chim Acta 556:374–382.

    Article  CAS  Google Scholar 

  50. Cartwright HM (2006) Neural network analysis of the degradation of oil spills. (In preparation).

    Google Scholar 

  51. Zhang X, Li H, Hou A, Havel J (2006) Artificial neural networks based on principal component analysis input selection for quantification in overlapped capillary electrophoresis peaks. Chemometr Intell Lab Syst 82:165–175.

    Article  CAS  Google Scholar 

  52. Tetko IV, Luik AI, Poda GI (1993) Applications of neural networks in structure-activity relationships of a small number of molecules. J Med Chem 36:811–814.

    Article  CAS  PubMed  Google Scholar 

  53. Havel J, Pena-Mendez EM, Rojas-Hernandez A, Doucet J-P, Panaye A (1998) Neural networks for optimization of high-performance capillary zone electrophoresis methods: a new method using a combination of experimental design and artificial neural networks. JChromatogr A 793:317–329.

    Article  CAS  Google Scholar 

  54. Yannis LL (2000) Artificial neural networks in liquid chromatography: efficient and improved quantitative structure-retention relationship models. J Chromatogr A 904:119–129.

    Article  Google Scholar 

  55. Polaskova P, Bocaz G, Li H, Havel J (2002) Evaluation of calibration data in capillary electrophoresis using artificial neural networks to increase precision of analysis. J Chromatogr A 979:59–67.

    Article  CAS  PubMed  Google Scholar 

  56. Guiochon G, Shirazi SG, Katti AM (1994) Fundamentals of preparative and nonlinear chromatography. Academic Press, Boston.

    Google Scholar 

  57. Guiochon GJ (2002) Preparative liquid chromatography. J Chromatogr A 965:129–161.

    Article  CAS  PubMed  Google Scholar 

  58. Craig LC (1944) Identification of small amounts of organic compounds by distribution studies. II. Separation by counter-current distribution. J Biol Chem 155:519–534.

    CAS  Google Scholar 

  59. Shan Y, Seidel-Morgenstern A (2005) Optimization of gradient elution conditions in multicomponent preparative liquid chromatography. J Chromatography A 1093:47–58.

    Article  CAS  Google Scholar 

  60. Santana RC, Do PT, Santikunaporn M, Alvarez WE, Taylor JD, Sughrue EL, Resasco DE (2006) Evaluation of different reaction strategies for the improvement of cetane number in diesel fuels. Fuel 85:643–656.

    Article  CAS  Google Scholar 

  61. Billingsley D (1995) Octane prediction of gasoline blends using neural nets. Proc NPRA Comput Conf.

    Google Scholar 

  62. Basu B, Kapur GS, Sarpal AS, Meusinger R (2003) A neural network approach to the prediction of cetane number of diesel fuels using nuclear magnetic resonance (NMR) spectroscopy. Energy and Fuels 6:1570–1575.

    Article  Google Scholar 

  63. Pasadakis N, Sourligas S, Foteinopoulos C (2006) Prediction of the distillation profile and cold properties of diesel fuels using mid-IR spectroscopy and neural networks. Fuel 85:1131–1137.

    Article  CAS  Google Scholar 

  64. Ochoa C, Chana A, Stud M (2001) Applications of Neural Networks in the Medicinal Chemistry Field. Curr Med Chem-Central Nervous System Agents 1:247–256.

    Article  CAS  Google Scholar 

  65. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727.

    Article  CAS  PubMed  Google Scholar 

  66. Kovesdi I, Dominguez-Rodriguez MF, Orfi L, Naray-Szabo G, Papp JG, Matyus P (1999) Application of neural networks in structure-activity relationships. Med Res Rev 19:249–269.

    Article  CAS  PubMed  Google Scholar 

  67. Manallack DT, Livingstone DJ (1999) Neural networks in drug discovery: have they lived up to their promise? Eur J Med Chem 34:195–208.

    Article  CAS  Google Scholar 

  68. Molnar L, Kereru GM, Papp A, Lorincz Z, Ambrus G, Darvas F (2005) A neural network based classification scheme for cytotoxicity predictions: validation on 30,000 compounds. Bioorg & Med Chem Letts 16:1037–1039.

    Article  Google Scholar 

  69. Balakin KV, Savchuk NP, Tetko IV (2006) In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr Med Chem 13:223–241.

    Article  CAS  PubMed  Google Scholar 

  70. Hernandez-Caraballo EA, Marco-Parra LM (2003) Direct analysis of blood serum by total reflection X-ray fluorescence spectrometry and application of an artificial neural network approach for cancer diagnosis. Spectrochimica Acta Part B 58:2205–2213.

    Article  Google Scholar 

  71. Goodacre R, Neal MJ, Kell DB, Greenham LW, Noble WC, Harvey RG (1994) Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolate from dogs. J Appl Bacteriology 76:124–134.

    CAS  Google Scholar 

  72. Nilsson T, Bassani, MR, Larsen TO, Montanarella L (1996) Classification of species of the genus Penicillium by Curie Point pyrolysis mass spectrometry followed by multivariate analysis and artificial neural networks. J Mass Spectrom 31:1422–1428.

    Article  CAS  PubMed  Google Scholar 

  73. Fernandez-Pachon MS, Villano D, Troncoso AM, Garcia-Parilla MC (2005) Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Anal Chim Acta 563:101–108.

    Article  Google Scholar 

  74. Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behaviour of flavonoids: structure-activity relationships. Free Radic Biol Med 22:749–760.

    Article  CAS  PubMed  Google Scholar 

  75. Heijnene CGM, Haenen GRMM, Van Acker FAA, Van Der Vijgh W, Bast A (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol in Vitro 15:3–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh M. Cartwright B.Sc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Cartwright, H.M. (2008). Artificial Neural Networks in Biology and Chemistry—The Evolution of a New Analytical Tool. In: Livingstone, D.J. (eds) Artificial Neural Networks. Methods in Molecular Biology™, vol 458. Humana Press. https://doi.org/10.1007/978-1-60327-101-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-101-1_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-718-1

  • Online ISBN: 978-1-60327-101-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics