Skip to main content

Bacterial Structural Genomics Initiative: Overview of Methods and Technologies Applied to the Process of Structure Determination

  • Protocol
  • 3662 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 426))

The focus over the last several years on increasing the number of three-dimensional structures of macromolecules by implementation of high throughput methodology has led to the establishment of dedicated structural genomics programs around the world. These worldwide efforts have in turn led to development of novel, parallelized approaches to cloning, expression, purification, and crystallization of proteins. This chapter describes in some detail the approaches and protocols that have been implemented in the Bacterial Structural Genomics Initiative.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rupp, B. (2003). High throughput crystallography at an affordable cost: the TB Structural Genomics Consortium Crystallization Facility. Acc. Chem. Res. 36, 173–181.

    Article  CAS  PubMed  Google Scholar 

  2. Busso, D., Kim, R., and Kim, S. H. (2003). Expression of soluble recombinant proteins in a cell-free system using a 96-well format. J. Biochem. Biophys. Meth. 55, 233–240.

    Article  CAS  PubMed  Google Scholar 

  3. Dieckman, L. J., Hanly, W. C., and Collart, E. R. (2006). Strategies for high throughput gene cloning and expression. Genet. Eng. (NY) 27, 179–190.

    Article  CAS  Google Scholar 

  4. Lesley, S. A. (2001). High throughput proteomics: protein expression and purifica tion in the postgenomic world. Protein Expr. Purif. 22, 159–164.

    Article  CAS  PubMed  Google Scholar 

  5. Peti, W., Page, R., Moy, K., O'Neil-Johnson, M., Wilson, I. A., Stevens, R. C., and Wuthrich, K. (2005). Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR. J. Struct. Funct. Genom. 6, 259–267.

    Article  CAS  Google Scholar 

  6. Bhikhabhai, R., Sjoberg, A., Hedkvist, L., Galin, M., Liljedahl, P., Frigard, T., Pettersson, N., Nilsson, M., Sigrell-Simon, J. A., and Markeland-Johansson, C. (2005). Production of milligram quantities of affinity tagged-proteins using automated multistep chromatographic purification. J. Chromatogr. A 1080, 83–92.

    Article  CAS  PubMed  Google Scholar 

  7. Scheich, C., Sievert, V., and Bussow, K. (2003). An automated method for high throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography. BMC Biotechnol. 3, 12.

    Article  PubMed  Google Scholar 

  8. Kim, Y., Dementieva, I., Zhou, M., Wu, R., Lezondra, L., Quartey, P., Joachimiak, G., Korolev, O., Li, H., and Joachimiak, A. (2004). Automation of protein purification for structural genomics. J. Struct. Funct. Genomics 5, 111–118.

    Article  CAS  PubMed  Google Scholar 

  9. Page, R., and Stevens, R. C. (2004). Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods 34, 373–389.

    Article  CAS  PubMed  Google Scholar 

  10. Kimber, M. S., Vallee, F., Houston, S., Necakov, A., Skarina, T., Evdokimova, E., Beasley, S., Christendat, D., Savchenko, A., Arrowsmith, C. H., Vedadi, M., Gerstein, M., and Edwards, A. M. (2003). Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins 51, 562–568.

    Article  CAS  PubMed  Google Scholar 

  11. Newman, J., Egan, D., Walter, T. S., Meged, R., Berry, I., Ben, J. M., Sussman, J. L., Stuart, D. I., and Perrakis, A. (2005). Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallogr. D. Biol. Crystallogr. 61, 1426–1431.

    Article  PubMed  Google Scholar 

  12. Matte, A., Sivaraman, J., Ekiel, I., Gehring, K., Jia, Z., and Cygler, M. (2003). Contribution of structural genomics to understanding the biology of Escherichia coli. J. Bacteriol. 185, 3994–4002.

    Article  CAS  PubMed  Google Scholar 

  13. Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., and Shao, Y. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.

    Article  CAS  PubMed  Google Scholar 

  14. Perna, N. T., Plunkett, G. I., Blattner, F. R., Mau, B., and Blattner, F. R. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.

    Article  CAS  PubMed  Google Scholar 

  15. Welch, R. A., Burland, V., Plunkett, G., III, Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S. R., Boutin, A., Hackett, J., Stroud, D., Mayhew, G. F., Rose, D. J., Zhou, S., Schwartz, D. C., Perna, N. T., Mobley, H. L., Donnenberg, M. S., and Blattner, F. R. (2002). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 17020–17024.

    Article  CAS  PubMed  Google Scholar 

  16. Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M., and Karp, P. D. (2005). EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33, D334–D337.

    Article  CAS  PubMed  Google Scholar 

  17. Kanehisa, M., Goto, S., Hattori, M., Oki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., and Hirakawa, M. (2006). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357.

    Article  CAS  PubMed  Google Scholar 

  18. Misra, R. V., Horler, R. S., Reindl, W., Goryanin, I. I., and Thomas, G. H. (2005). EchoBASE: an integrated post-genomic database for Escherichia coli. Nucleic Acids Res. 33, D329–D333.

    Article  CAS  PubMed  Google Scholar 

  19. Teichmann, S. A., Rison, S. C., Thornton, J. M., Riley, M., Gough, J., and Chothia, C. (2001). The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. J. Mol. Biol. 311, 693–708.

    Article  CAS  PubMed  Google Scholar 

  20. Riley, M., Abe, T., Arnaud, M. B., Berlyn, M. K., Blattner, F. R., Chaudhuri, R. R., Glasner, J. D., Horiuchi, T., Keseler, I. M., Kosuge, T., Mori, H., Perna, N. T., Plunkett, G., III, Rudd, K. E., Serres, M. H., Thomas, G. H., Thomson, N. R., Wishart, D., and Wanner, B. L. (2006). Escherichia coli K-12: a cooperatively developed annotation snapshot—2005. Nucleic Acids Res. 34, 1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Riley, M., and Serres, M. H. (2000). Interim report on genomics of Escherichia coli. Annu. Rev. Microbiol. 54, 341–411.

    Article  CAS  PubMed  Google Scholar 

  22. Finn, R. D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S. R., Sonnhammer, E. L., and Bateman, A. (2006). Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–D251.

    Article  CAS  PubMed  Google Scholar 

  23. Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O'Donovan, C., Redaschi, N., and Yeh, L. S. (2005). The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154–D159.

    Article  CAS  PubMed  Google Scholar 

  24. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., and Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analy sis. Nucleic Acids Res. 31, 3784–3788.

    Article  CAS  PubMed  Google Scholar 

  25. Raymond, S., O'Toole, N., and Cygler, M. (2004). A data management system for structural genomics. Proteome. Sci. 2, 4.

    Article  PubMed  Google Scholar 

  26. Bendtsen, J. D., Nielsen, H., Von, H. G., and Brunak, S. (2004). Improved predic tion of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795.

    Article  PubMed  Google Scholar 

  27. Kall, L., Krogh, A., and Sonnhammer, E. L. (2004). A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  28. Kapust, R. B., Tozser, J., Fox, J. D., Anderson, D. E., Cherry, S., Copeland, T. D., and Waugh, D. S. (2001). Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 14, 993–1000.

    Article  CAS  PubMed  Google Scholar 

  29. Dougherty, W. G., Carrington, J. C., Cary, S. M., and Parks, T. D. (1988). Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO J. 7, 1281–1287.

    CAS  PubMed  Google Scholar 

  30. Carrington, J. C., and Dougherty, W. G. (1988). A viral cleavage cassette: Identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc. Natl. Acad. Sci. USA 85, 3391–3395.

    Article  CAS  PubMed  Google Scholar 

  31. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of micro-gram quantities of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  32. Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234.

    Article  CAS  PubMed  Google Scholar 

  33. Hendrickson, W. A., Horton, J. R., and LeMaster, D. M. (1990). Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672.

    CAS  PubMed  Google Scholar 

  34. Doublie, S. (1997). Preparation of selenomethionyl proteins for phase determina tion. Meth. Enzymol. 276, 523–530.

    Article  CAS  PubMed  Google Scholar 

  35. Koth, C. M., Orlicky, S. M., Larson, S. M., and Edwards, A. M. (2003). Use of lim ited proteolysis to identify protein domains suitable for structural analysis. Meth. Enzymol. 368, 77–84.

    Article  CAS  PubMed  Google Scholar 

  36. Heras, B., and Martin, J. L. (2005). Post-crystallization treatments for improving diffrac tion quality of protein crystals. Acta Crystallogr. D. Biol. Crystallogr. 61, 1173–1180.

    Article  PubMed  Google Scholar 

  37. Terwilliger, T. C. (2002). Automated structure solution, density modification and model building. Acta Crystallogr. D Biol. Crystallogr. 58, 1937–1940.

    Article  PubMed  Google Scholar 

  38. Schneider, T. R., and Sheldrick, G. M. (2002). Substructure solution with SHELXD. Acta Crystallogr. D. Biol. Crystallogr. 58, 1772–1779.

    Article  PubMed  Google Scholar 

  39. Weeks, C. M., and Miller, R. (1999). Optimizing Shake-and-Bake for proteins. Acta Crystallogr. D55, 492–500.

    CAS  Google Scholar 

  40. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M., and Paciorek, W. (2003). Generation, representation and flow of phase information in structure determina tion: recent developments in and around SHARP 2.0. Acta Crystallogr. D. Biol. Crystallogr. 59, 2023–2030.

    Article  CAS  PubMed  Google Scholar 

  41. Sheldrick, G. M. (2002). Macromolecular phasing with SHELXE. Z. Kristallogr. 217, 644–650.

    Article  CAS  Google Scholar 

  42. Terwilliger, T. C. (2000). Maximum-likelihood density modification. Acta Crystallogr. D56, 965–972.

    CAS  Google Scholar 

  43. Perrakis, A., Morris, R., and Lamzin, V. S. (1999). Automated protein model build ing combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463.

    Article  CAS  PubMed  Google Scholar 

  44. Dauter, Z., Li, M., and Wlodawer, A. (2000). Practical experience with the use of halides for phasing macromolecular structures: a powerful tool for structural genomics. Acta Crystallogr. D57, 239–249.

    Google Scholar 

  45. Rangarajan, E. S., Proteau, A., Wagner, J., Hung, M. N., Matte, A., and Cygler, M. (2006). E. coli histidinol phosphate phosphatase: Structural snapshots along the reaction pathway. J. Biol. Chem. 281, 37930–37941.

    Article  CAS  PubMed  Google Scholar 

  46. Hung, M. N., Rangarajan, E., Munger, C., Nadeau, G., Sulea, T., and Matte, A. (2006). Crystal structure of TDP-fucosamine acetyltransferase (WecD) from Escherichia coli, an enzyme required for enterobacterial common antigen synthe sis. J. Bacteriol. 188, 5606–5617.

    Article  CAS  PubMed  Google Scholar 

  47. Sivaraman, J., Myers, R. S., Boju, L., Sulea, T., Cygler, M., Jo Davisson, V., and Schrag, J. D. (2005). Crystal structure of Methanobacterium thermoautotrophicum phosphoribosyl-AMP cyclohydrolase HisI. Biochemistry 44, 10071–10080.

    Article  CAS  PubMed  Google Scholar 

  48. Barbosa, J. A., Sivaraman, J., Li, Y., Larocque, R., Matte, A., Schrag, J. D., and Cygler, M. (2002). Mechanism of action and NAD+-binding mode revealed by the crystal structure of L-histidinol dehydrogenase. Proc. Natl. Acad. Sci. USA. 99, 1859–1864.

    Article  CAS  PubMed  Google Scholar 

  49. Tocilj, A., Schrag, J. D., Li, Y., Schneider, B. L., Reitzer, L., Matte, A., and Cygler, M. (2005). Crystal structure of N-succinylarginine dihydrolase AstB, bound to sub strate and product, an enzyme from the arginine catabolic pathway of Escherichia coli. J. Biol. Chem. 280, 15800–15808.

    Article  CAS  PubMed  Google Scholar 

  50. Michel, G., Sauvé, V., Larocque, R., Li, Y., Matte, A., and Cygler, M. (2002). The structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold with a unique knot. Structure 10, 1303–1315.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the important contributions of a number of lab members, both past and present, to the procedures and protocols described in this chapter, including Yunge Li, Véronique Sauvé, Christine Munger, Eunice Ajamian, Erumbi S. Rangarajan, Pietro Iannuzzi, Guy Nadeau, Robert Larocque, Patrice Bouchard, Stephane Raymond, Jayaraman Sivaraman, Nicholas O'Toole, Joseph D. Schrag, Vladimir V. Lunin, Gurvan Michel, Joao Barbosa, Ante Tocilj, and Frederic Ouelette.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cygler, M., Hung, Mn., Wagner, J., Matte, A. (2008). Bacterial Structural Genomics Initiative: Overview of Methods and Technologies Applied to the Process of Structure Determination. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_36

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics