Microarray Probe Mapping and Annotation in Cross-Species Comparative Toxicogenomics

  • John N. Calley
  • William B. Mattes
  • Timothy P. Ryan
Part of the Methods in Molecular Biology™ book series (MIMB, volume 460)


Genomics-based tools, such as microarrays, do appear to offer promise in evaluating the relevance of one species to another in terms of molecular and cellular response to a given treatment. However, to fulfill this promise the individual end points (i.e., the genes, proteins, or mRNAs) measured in one species must be mapped to corresponding end points in another species. Several approaches, along with their strengths and weaknesses, are described in this chapter. A sequential approach is described that first makes use of a “Genome To Genome Through Orthology” method, where probe sequences for a given species are mapped into full-length sequences for that species, associated with the locus for those sequences and then into a second species by consulting orthology resources. The second step supplements these results by mapping the probe sequences for the given species into the best matching transcript from any organism, which then are mapped into the appropriate native locus and finally into the second species via an orthology resource. The results of this method are given for an experiment comparing the transcriptional response of canine liver to phenobarbital with that of rat liver.

Key Words

annotation bioinformatics cross-species genomics microarray mRNA 


  1. 1.
    Birch, H. E., and Schreiber, G. (1986) Transcriptional regulation of plasma protein synthesis during inflammation. J. Biol. Chem. 261, 8077–8080.PubMedGoogle Scholar
  2. 2.
    Wegenka, U. M., Buschmann, J., Lutticken, C., Heinrich, P. C., and Horn, F. (1993) Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell. Biol. 13, 276–288.PubMedGoogle Scholar
  3. 3.
    Fitch, W. M. (1970) Distinguishing homologous from analogous proteins. Syst. Zool. 19, 99–113.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen, F., Mackey, A. J., Stoeckert, C. J., Jr., and Roos, D. S. (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 34, D363–368.CrossRefPubMedGoogle Scholar
  5. 5.
    Li, L., Stoeckert, C. J., Jr., and Roos, D. S. (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189.CrossRefPubMedGoogle Scholar
  6. 6.
    Remm, M., Storm, C. E., and Sonnhammer, E. L. (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314, 1041–1052.CrossRefPubMedGoogle Scholar
  7. 7.
    Doehmer, J., Holtkamp, D., Soballa, V., Raab, G., Schmalix, W., Seidel, A., et al. (1995) Cytochrome P450 mediated reactions studied in genetically engineered V79 Chinese hamster cells. Pharmacogenetics 5(Spec. No.), S91–96.CrossRefPubMedGoogle Scholar
  8. 8.
    Glatt, H., Engelke, C. E., Pabel, U., Teubner, W., Jones, A. L., Coughtrie, M. W., et al. (2000) Sulfotransferases: genetics and role in toxicology. Toxicol. Lett. 112–113, 341–348.CrossRefPubMedGoogle Scholar
  9. 9.
    Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., et al. (2006) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 34, D173–180.CrossRefPubMedGoogle Scholar
  10. 10.
    Birney, E., Andrews, T. D., Bevan, P., Caccamo, M., Chen, Y., Clarke, L., et al. (2004) An overview of Ensembl. Genome Res. 14, 925–928.CrossRefPubMedGoogle Scholar
  11. 11.
    Blake, J. A., Eppig, J. T., Bult, C. J., Kadin, J. A., and Richardson, J. E. (2006) The Mouse Genome Database (MGD): updates and enhancements. Nucleic Acids Res. 34, D562–567.CrossRefPubMedGoogle Scholar
  12. 12.
    O’Brien, K. P., Remm, M., and Sonnhammer, E. L. (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 33, D476–480.CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson, R. J., Williams, J. M., Schreiber, B. M., Elfe, C. D., Lennon-Hopkins, K. L., Skrzypek, M. S., and White, R. D. (2005) Analysis of gene ontology features in microarray data using the Proteome BioKnowledge Library. In Silico Biol. 5, 389–399.PubMedGoogle Scholar
  14. 14.
    Hodges, P. E., Carrico, P. M., Hogan, J. D., O’Neill, K. E., Owen, J. J., Mangan, M., et al. (2002) Annotating the human proteome: the Human Proteome Survey Database (HumanPSD) and an in-depth target database for G protein-coupled receptors (GPCR-PD) from Incyte Genomics. Nucleic Acids Res. 30, 137–141.CrossRefPubMedGoogle Scholar
  15. 15.
    Kent, W. J. (2002) BLAT–the BLAST-like alignment tool. Genome Res. 12 656–664. PubMedGoogle Scholar
  16. 16.
    Waxman, D. J., and Azaroff, L. (1992) Phenobarbital induction of cytochrome P-450 gene expression. Biochem J. 281(Pt 3), 577–592.PubMedGoogle Scholar
  17. 17.
    Omiecinski, C. J., Walz, F. G., Jr., and Vlasuk, G. P. (1985) Phenobarbital induction of rat liver cytochromes P-450b and P-450e. Quantitation of specific RNAs by hybridization to synthetic oligodeoxyribonucleotide probes. J. Biol. Chem. 260, 3247–3250.PubMedGoogle Scholar
  18. 18.
    Graham, R. A., Downey, A., Mudra, D., Krueger, L., Carroll, K., Chengelis, C., et al. (2002) In vivo and in vitro induction of cytochrome P450 enzymes in beagle dogs. Drug Metab. Dispos. 30, 1206–1213.CrossRefPubMedGoogle Scholar
  19. 19.
    Jayyosi, Z., Muc, M., Erick, J., Thomas, P. E., and Kelley, M. (1996) Catalytic and immunochemical characterization of cytochrome P450 isozyme induction in dog liver. Fundam. Appl. Toxicol. 31, 95–102.CrossRefPubMedGoogle Scholar
  20. 20.
    Graves, P. E., Elhag, G. A., Ciaccio, P. J., Bourque, D. P., and Halpert, J. R. (1990) cDNA and deduced amino acid sequences of a dog hepatic cytochrome P450IIB responsible for the metabolism of 2,2′,4,4′,5,5′-hexachlorobiphenyl. Arch Biochem. Biophys. 281, 106–115.CrossRefPubMedGoogle Scholar
  21. 21.
    Duignan, D. B., Sipes, I. G., Ciaccio, P. J., and Halpert, J. R. (1988) The metabolism of xenobiotics and endogenous compounds by the constitutive dog liver cytochrome P450 PBD-2. Arch Biochem. Biophys. 267, 294–304.CrossRefPubMedGoogle Scholar
  22. 22.
    Maglott, D., Ostell, J., Pruitt, K. D., and Tatusova, T. (2005) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 33, D54–58.CrossRefPubMedGoogle Scholar
  23. 23.
    Khatri, P., and Draghici, S. (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21, 3587–3595.CrossRefPubMedGoogle Scholar
  24. 24.
    Chuang, D. M., Hough, C., and Senatorov, V. V. (2005) Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 45, 269–290.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John N. Calley
    • 1
  • William B. Mattes
    • 2
  • Timothy P. Ryan
    • 1
  1. 1.Department of Integrative BiologyEli Lilly and CompanyGreenfield
  2. 2.Department of ToxicologyThe Critical Path InstituteRockvilleMaryland

Personalised recommendations