Quality Control of Microarray Assays for Toxicogenomic and In Vitro Diagnostic Applications

  • Karol L. Thompson
  • Joseph Hackett
Part of the Methods in Molecular Biology™ book series (MIMB, volume 460)


The generation of high-quality microarray data for toxicogenomics can be affected by the study design and methods used for sample acquisition, preparation, and processing. Bias can be introduced during animal treatment, tissue handling, and sample preparation. Metrics and controls used in assessing RNA integrity and the quality of microarray sample generation are reviewed in this chapter. Regulations and guidelines involved in the application of microarrays as a commercial in vitro diagnostic device are also described.

Key Words

in vitro diagnostics metrics microarrays quality control standards 



This article represents the professional opinions and statements of the authors and is not an official document, guidance, or policy of the U.S. Government, Department of Health and Human Services (DHHS), or the FDA, nor should any official endorsement be inferred.


  1. 1.
    Waring, J.F., Jolly, R.A., Ciurlionis, R., Lum, P.Y., Praestgaard, J.T., Morfitt, D.C., et al. (2001) Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol. Appl. Pharmacol . 175, 28–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Thomas, R.S., Rank, D.R., Penn, S.G., Zastrow, G.M., Hayes, K.R., Pande, K., et al. (2001) Identification of toxicologically predictive gene sets using cDNA microarrays. Mol. Pharmacol. 60, 1189–1194.PubMedGoogle Scholar
  3. 3.
    Pennie, W., Pettit, S.D., and Lord, P.G. (2004) Toxicogenomics in Risk Assessment: an overview of an HESI collaborative research program. Environ. Health Perspect. 112, 417–419.CrossRefPubMedGoogle Scholar
  4. 4.
    Shi, L., Reid, L.H., Jones, W.D., Shippy, R., Warrington, J.A., Baker, S.C. et al. (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 24, 1151–1161.CrossRefPubMedGoogle Scholar
  5. 5.
    Bammler, T., Beyer, R.P., Bhattacharya, S., Boorman, G.A., Boyles, A., Bradford, B.U. et al. (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat. Methods 2, 351–356.CrossRefPubMedGoogle Scholar
  6. 6.
    Kuo, W.P., Liu, F., Trimarchi, J., Punzo, C., Lombardi, M., Sarang, J. et al. (2006) A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nat. Biotechnol. 24, 832–840.CrossRefPubMedGoogle Scholar
  7. 7.
    Hoffman, E.P., Awad, T., Palma, J., Webster, T., Hubbell, E., Warrington, J.A., et al. (2004) Expression profiling – best practices for data generation and interpretation in clinical trials. Nat. Rev. Genet. 5, 229–237.CrossRefGoogle Scholar
  8. 8.
    Dumur, C.I., Nasim, S., Best, A.M., Archer, K.J., Ladd, A.C., Mas, V.R., et al. (2004) Evaluation of quality-control criteria for microarray gene expression analysis. Clin. Chem. 50, 1994–2002.CrossRefPubMedGoogle Scholar
  9. 9.
    Carter, D.E., Robinson, J.F., Allister, E.M., Huff, M.W., and Hegele, R.A. (2005) Quality assessment of microarray experiments. Clin. Biochem. 38, 639–642.CrossRefPubMedGoogle Scholar
  10. 10.
    Benes, V. and Muckenthaler, M. (2003) Standardization of protocols in cDNA microarray analysis. TRENDS Biochem. Sci. 28, 244–249.CrossRefPubMedGoogle Scholar
  11. 11.
    External RNA Controls Consortium. (2005) The external RNA controls consortium: a progress report. Nat. Methods 2, 731–734.CrossRefGoogle Scholar
  12. 12.
    Thompson, K.L., Rosenzweig, B.A., Pine, P.S., Retief, J., Turpaz, Y., Afshari, C.A., et al. (2005) Use of a mixed tissue RNA design for performance assessments on multiple microarray formats. Nucleic Acids Res., 33, e187.CrossRefPubMedGoogle Scholar
  13. 13.
    Mattes, W.B., Pettit, S.D., Sansone, S-A., Bushel, P.R., and Waters, M.D. (2004) Database development in toxicogenomics: issues and efforts. Environ. Health Perspect. 112, 495–505.CrossRefPubMedGoogle Scholar
  14. 14.
    Reid, L.H. and Casey, S. (2005) The value of a proficiency testing program to monitor performance in microarray laboratories. Pharm. Disc. 5, 20–25.Google Scholar
  15. 15.
    Food and Drug Administration. Table of valid genomic biomarkers in the context of approved drug labels. Available at
  16. 16.
    Ganter, B., Tugendreich, S., Pearson, C., Ayanoglu, E., Baumhueter, S., Bostian, K., et al. (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J. Biotechnol. 119, 219–244.CrossRefPubMedGoogle Scholar
  17. 17.
    HESI Committee on the Application of Genomics in Mechanism-Based Risk Assessment, Baseline Animal Data Working Group. Available at
  18. 18.
    Akhtar, R.A., Reddy, A.B., Maywood, E.S., Clayton, J.D., King, V.M., Smtih, A.G., et al. (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550.CrossRefPubMedGoogle Scholar
  19. 19.
    Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H., and Weitz, C.J. (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Kita, Y., Shiozawa, M., Jin, W., Majewski, R.R., Besharse, J.C., Greene, A.S., and Jacob, H.J. (2002) Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 12, 55–65.CrossRefPubMedGoogle Scholar
  21. 21.
    Boorman, G.A., Blackshear, P.E., Parker, J.S., Lobenhofer, E.K., Malarkey, D.E., Vallant, M.K., et al. (2005) Hepatic gene expression changes throughout the day in the Fischer rat: Implications for toxicogenomic experiments. Toxicol. Sci. 86, 185–193.CrossRefPubMedGoogle Scholar
  22. 22.
    Watson, W.H., Dahm, L.J., and Jones, D.P. (2003) Mechanisms of chemically induced liver disease, In: Hepatology: A Textbook of Liver Disease, Vol. II (Zakim, D. and Boyer, T.D., eds.), Saunders, Philadelphia, pp. 739–753.Google Scholar
  23. 23.
    Morgan, K.T., Jayyosi, Z., Hower, M.A., Pino, M.V., Connolly, T.M., Kotlenga, K., et al. (2005) The hepatic transcriptome as a window on whole-body physiology and pathophysiology. Toxicol. Pathol. 33, 136–145.CrossRefPubMedGoogle Scholar
  24. 24.
    Stokkan, K.A., Yamazaki, S., Tei, H., Sakaki, Y., and Menaker, M. (2001) Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493.CrossRefPubMedGoogle Scholar
  25. 25.
    Takashima, K., Mizukawa, Y., Morishita, K., Okuyama, M., Kasahara, T., Toritsuka, N., et al. (2006) Effect of the difference in vehicles on gene expression in the rat liver—analysis of the control data in the Toxicogenomics Project Database. Life Sci. 78, 2787–2796.CrossRefPubMedGoogle Scholar
  26. 26.
    Sakamoto, A., Imai, J., Nishikawa, A., Honma, R., Ito, E., Yanagisawa, Y., et al. (2005) Influence of inhalation anesthesia assessed by comprehensive gene expression profiling. Gene 356, 39–48.CrossRefPubMedGoogle Scholar
  27. 27.
    Boorman, G.A., Irwin, R.D., Vallant, M.K., Gerken, D.K., Lobenhofer, E.K., Hejtmancik, M.R., et al. (2005) Variation in the hepatic gene expression in individual male Fischer rats. Toxicol. Pathol. 33, 102–110.CrossRefPubMedGoogle Scholar
  28. 28.
    Whitney, A.R., Diehn, M., Popper, S.J., Alizadeh, A.A., Boldrick, J.C., Relman, D.A., Brown, P.O. (2003) Individuality and variation in gene expression patterns in human blood. Proc. Natl. Acad. Sci. U. S. A. 100, 1896–1901.CrossRefPubMedGoogle Scholar
  29. 29.
    Waters, M.D. and Fostel, J.M. (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat. Genet. 5, 936–948.Google Scholar
  30. 30.
    Irwin, R.D., Parker, J.S., Lobenhofer, E.K., Burka, L.T., Blackshear, P.E., Vallant, M.K., et al. (2005) Transcriptional profiling of the left and median liver lobes of male f344/n rats following exposure to acetaminophen. Toxicol. Pathol. 33, 111–117.CrossRefPubMedGoogle Scholar
  31. 31.
    Hamadeh, H.K., Jayadev, S., Gaillard, E.T., Huang, Q., Stoll, R., Blanchard, K., et al. (2004) Integration of clinical and gene expression endpoints to explore furan-mediated hepatotoxicity. Mutat. Res. 549, 169–183.PubMedGoogle Scholar
  32. 32.
    Pine, P., Rosenzweig, B.A., Turpaz, Y., and Thompson, K. (2007) Characterization of alterations in rat liver microarray data induced by tissue handling. BMC Biotechnol. 7, 57.CrossRefPubMedGoogle Scholar
  33. 33.
    Srinivasan, M., Sedmak, D., and Jewell, S. (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161, 1961–1971.CrossRefPubMedGoogle Scholar
  34. 34.
    Lewis, F., Maughan, N.J., Smith, V., Hillan, K., and Quirke, P. (2001) Unlocking the archive—gene expression in paraffin-embedded tissue. J. Pathol. 195, 66–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Michel, C., Desdouets, C., Sacre-Salem, B., Gautier, J.C., Roberts, R., and Boitier, E. (2003) Liver gene expression profiles of rats treated with clofibric acid: comparison of whole liver and laser capture microdissected liver. Am. J. Pathol. 163, 2191–2199.CrossRefPubMedGoogle Scholar
  36. 36.
    Luzzi, V., Mahadevappa, M., Raja, R., Warrington, J.A., Watson, M.A. (2003) Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J. Mol. Diagn. 5, 9–14.CrossRefPubMedGoogle Scholar
  37. 37.
    Baechler, E.C., Batliwalla, F.M., Karypis, G., Gaffney, P.M., Moser, K., Ortmann, W.A., et al. (2004) Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. Genes Immun. 5, 347–353.CrossRefPubMedGoogle Scholar
  38. 38.
    Debey, S., Schoenbeck, U., Hellmich, M., Gathof, B.S., Pillai, R., Zander, T., and Schultze, J.L. (2004) Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. Pharmacogenomics J. 4, 193–207.CrossRefPubMedGoogle Scholar
  39. 39.
    Rainen, L., Oelmueller, U., Jurgensen, S., Wyrich, R., Ballas, C., Schram, J., et al. (2002) Stabilization of mRNA expression in whole blood samples. Clin. Chem. 48, 1883–1890.PubMedGoogle Scholar
  40. 40.
    Affymetrix. Technical Note: Globin reduction protocol: a method for processing whole blood RNA samples for improved array results. Available at
  41. 41.
    Lu, Q., Cao, T., Zhang, Z., and Liu, W. (2004) Multiple gene differential expression pattersn in huma ischemic liver: Safe limit of warm ischemic time. World J. Gastroenterol. 10, 2130–2133.PubMedGoogle Scholar
  42. 42.
    Cronin, M., Ghosh, K., Sistare, F., Quackenbush, J., Vilker, V., and O’Connell, C. (2004) Universal RNA reference materials for gene expression. Clin. Chem., 50 1464–1471.CrossRefPubMedGoogle Scholar
  43. 43.
    Imbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E., et al. (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 33, e56.CrossRefPubMedGoogle Scholar
  44. 44.
    Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., et al. (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3.CrossRefPubMedGoogle Scholar
  45. 45.
    Auer, H., Lyianarachchi, S., Newsom, D., Klisovic, M.I., Marcucci, G., and Kornacker, K. (2003) Chipping away at the chip bias: RNA degradation in microarray analysis. Nat. Genet. 35, 292–293.CrossRefPubMedGoogle Scholar
  46. 46.
    Columbus Children’s Research Institute, Degradometer v.1.41 software. Available at
  47. 47.
    Ambion Technical Bulletin. Available at
  48. 48.
    Fare, T.L., Coffey, E.M., Dai, H., He, Y.D., Kessler, D.A., Kilian, K.A., et al. (2003) Effects of atmospheric ozone on microarray data quality. Anal. Chem. 75 4672–4675.CrossRefPubMedGoogle Scholar
  49. 49.
    Tong, W., Lucas, A.B., Shippy, R., Fan, X., Fang, H., Hong, H. et al. (2006) Evaluation of external RNA controls for the assessment of microarray performance. Nat. Biotechnol. 24, 1132–1139.CrossRefPubMedGoogle Scholar
  50. 50.
    Clinical and Laboratory Standards Institute (CLSI). (2006) Use of External RNA Controls in Gene Expression Assays; Approved Guideline. CLSI document MM16-A. Wayne, PA, Clinical and Laboratory Standards Institute.Google Scholar
  51. 51.
    Sharov, V., Kwong, K.Y., Frank, B., Chen, E., Hasseman, J., Gaspard, R., et al. (2004) The limits of log-ratios. BMC Biotechnol. 4, 3.CrossRefPubMedGoogle Scholar
  52. 52.
    ILSI. Report from ILSI Health and Environmental Sciences Institute (HESI) Technical Committee on the Application of Genomics to Mechanism-Based Risk Assessment. Available at
  53. 53.
    Finkelstein, D.B. (2005) Trends in the quality of data from 5168 oligonucleotide microarrays from a single facility. J. Biomol. Techiques 16, 143–153.Google Scholar
  54. 54.
    Affymetrix. Statistical Applications Description Document. Available at
  55. 55.
    Jones, L., Goldstein, D.R., Hughes, G., Strand, A.D., Collin, F., Dunnett, S.B., et al. (2006) Assessment of the relationship between pre-chip and post-chip quality measures for Affymetrix GeneChip expression data. BMC Bioinformatics 7, 211.CrossRefPubMedGoogle Scholar
  56. 56.
    External RNA Controls Consortium. (2005) Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics 6, 150.CrossRefGoogle Scholar
  57. 57.
    Federal Food Drug and Cosmetic Act. Section 201. 21 United States Code (USC) 321.Google Scholar
  58. 58.
    FDA. Industry Support. Available at
  59. 59.
    21 CFR 862.9.Google Scholar
  60. 60.
    21 CFR 807.81, 807.87, 807.92.Google Scholar
  61. 61.
    21 CFR Part 814.Google Scholar
  62. 62.
    FDA. Office of In Vitro Diagnostic Device Evaluation and Safety. Available at
  63. 63.
    FDA. Information on Releasable 510 (k)s Available at
  64. 64.
    21 CFR 812.2 (c).Google Scholar
  65. 65.
    FDA. Pre-IDE Program: Issues and Answers. Issued March 25, 1999. Available at–1.html.
  66. 66.
    21 CFR 862, Subpart D.Google Scholar
  67. 67.
    FDA. Class II Special Control Guidance Document: Cyclosporine and Tacrolimus Assays; Guidance for Industry and FDA. Issued September 16, 2002. Available at
  68. 68.
    FDA. Guidance for Industry and FDA Staff Class II Special Controls Guidance Document: Drug Metabolizing Enzyme Genotyping System. Issued March 10, 2005. Available at
  69. 69.
    FDA. System, Cystic Fibrosis Transmembrane Conductance Regulator, Gene Mutation Detection. Available at
  70. 70.
    FDA. Drug-Diagnostic Co-development Concept Paper. Issued April 2005. Available at

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Karol L. Thompson
    • 1
  • Joseph Hackett
    • 2
  1. 1.Division of Applied Pharmacology ResearchCenter for Drug Evaluation and Research, U.S. Food and Drug AdministrationSilver Spring
  2. 2.Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug AdministrationRockville

Personalised recommendations