Advertisement

Use of Traditional End Points and Gene Dysregulation to Understand Mechanisms of Toxicity: Toxicogenomics in Mechanistic Toxicology

  • Wayne R. Buck
  • Jeffrey F. Waring
  • Eric A. Blomme
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 460)

Summary

Microarray technologies can be used to generate massive amounts of gene expression information as an initial step to decipher the molecular mechanisms of toxicologic changes. Identifying genes whose expression is associated with specific toxic end points is an initial step in predicting, characterizing, and understanding toxicity. Analysis of gene function and the chronology of gene expression changes represent additional methods to generate hypotheses of the mechanisms of toxicity. Follow-up experiments are typically required to confirm or refute hypotheses derived from toxicogenomic data. Understanding the mechanism of toxicity for a compound is a critical step in forming a rational plan for developing counterscreens for toxicity and for increasing productivity of research and development while decreasing the risk of late-stage failure in pharmaceutical development.

Key Words

gene expression mechanism of toxicity microarray phenotype 

References

  1. 1.
    Barefoot, J. C., Gronbaek, M., Feaganes, J. R., McPherson, R. S., Williams, R. B., and Siegler, I. C. (2002) Alcoholic beverage preference, diet, and health habits in the UNC Alumni Heart Study. Am. J. Clin. Nutr. 76, 466–472.PubMedGoogle Scholar
  2. 2.
    Bono, H., and Okazaki, Y. (2002) Functional transcriptomes: comparative analysis of biological pathways and processes in eukaryotes to infer genetic networks among transcripts. Curr. Opin. Struct. Biol. 12, 355–361.CrossRefPubMedGoogle Scholar
  3. 3.
    Larrey, D., Tinel, M., and Pessayre, D. (1983) Formation of inactive cytochrome P-450 Fe(II)-metabolite complexes with several erythromycin derivatives but not with josamycin and midecamycin in rats. Biochem. Pharmacol. 32, 1487–1493.CrossRefPubMedGoogle Scholar
  4. 4.
    Amacher, D. E., Schomaker, S. J., Boldt, S. E., and Mirsky, M. (2006) The relationship among microsomal enzyme induction, liver weight, and histological change in cynomolgus monkey toxicology studies. Food Chem. Toxicol. 44, 528–537.CrossRefPubMedGoogle Scholar
  5. 5.
    Lai, D. Y. (2004) Rodent carcinogenicity of peroxisome proliferators and issues on human relevance. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 22, 37–55.PubMedGoogle Scholar
  6. 6.
    Waring, J. F., Gum, R., Morfitt, D., Jolly, R. A., Ciurlionis, R., Heindel, M., et al. (2002) Identifying toxic mechanisms using DNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology 181–182, 537–550.CrossRefPubMedGoogle Scholar
  7. 7.
    Wolfgang, G. H., Robertson, D. G., Welty, D. F., and Metz, A. L. (1995) Hepatic and adrenal toxicity of a novel lipid regulator in beagle dogs. Fundam. Appl. Toxicol. 26, 272–281.CrossRefPubMedGoogle Scholar
  8. 8.
    Grasso, P., and Hinton, R. H. (1991) Evidence for and possible mechanisms of non-genotoxic carcinogenesis in rodent liver. Mutat. Res. 248, 271–290.PubMedGoogle Scholar
  9. 9.
    Hamadeh, H. K., Bushel, P. R., Jayadev, S., Martin, K., DiSorbo, O., Sieber, S., et al. (2002) Gene expression analysis reveals chemical-specific profiles. Toxicol. Sci. 67, 219–231.CrossRefPubMedGoogle Scholar
  10. 10.
    Kemper, B. (1998) Regulation of cytochrome P450 gene transcription by phenobarbital. Prog. Nucleic Acid Res. Mol. Biol. 61, 23–64.PubMedGoogle Scholar
  11. 11.
    Voss, K. A., Liu, J., Anderson, S. P., Dunn, C., Miller, J. D., Owen, J. R., et al. (2006) Toxic effects of fumonisin in mouse liver are independent of the peroxisome proliferator-activated receptor alpha. Toxicol. Sci. 89, 108–119.CrossRefPubMedGoogle Scholar
  12. 12.
    Fielden, M. R., Brennan, R., and Gollub, J. (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by non-genotoxic chemicals. Toxicol. Sci. 99, 90–100.CrossRefPubMedGoogle Scholar
  13. 13.
    Nie, A. Y., McMillian, M., Parker, J. B., Leone, A., Bryant, S., Yieh, L., et al. (2006) Predictive toxicogenomics approaches reveal underlying molecular mechanisms of nongenotoxic carcinogenicity. Mol. Carcinog. 45, 914–933.CrossRefPubMedGoogle Scholar
  14. 14.
    Wallace, K. B., Hausner, E., Herman, E., Holt, G. D., MacGregor, J. T., Metz, A. L., et al. (2004) Serum troponins as biomarkers of drug-induced cardiac toxicity. Toxicol. Pathol. 32, 106–121.CrossRefPubMedGoogle Scholar
  15. 15.
    Singal, P. K., and Iliskovic, N. (1998) Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 339, 900–905.CrossRefPubMedGoogle Scholar
  16. 16.
    Kalivendi, S. V., Konorev, E. A., Cunningham, S., Vanamala, S. K., Kaji, E. H., Joseph, J., and Kalyanaraman, B. (2005) Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem. J. 389, 527–539.CrossRefPubMedGoogle Scholar
  17. 17.
    Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., and Gianni, L. (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56, 185–229.CrossRefPubMedGoogle Scholar
  18. 18.
    Robert, J. (2007) Preclinical assessment of anthracycline cardiotoxicity in laboratory animals: Predictiveness and pitfalls. Cell. Biol. Toxicol. 23, 27–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Chaiswing, L., Cole, M. P., St Clair, D. K., Ittarat, W., Szweda, L. I., and Oberley, T. D. (2004) Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury. Toxicol. Pathol. 32, 536–547.CrossRefPubMedGoogle Scholar
  20. 20.
    Jang, Y. M., Kendaiah, S., Drew, B., Phillips, T., Selman, C., Julian, D., and Leeuwenburgh, C. (2004) Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett. 577, 483–490.CrossRefPubMedGoogle Scholar
  21. 21.
    Gu, Y. G., Weitzberg, M., Clark, R. F., Xu, X., Li, Q., Lubbers, N. L., et al. (2007) N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as acetyl-coA carboxylase inhibitors—improvement of cardiovascular and neurological liabilities via structural modifications. J. Med. Chem. 50, 1078–1082.CrossRefPubMedGoogle Scholar
  22. 22.
    Ganter, B., Tugendreich, S., Pearson, C. I., Ayanoglu, E., Baumhueter, S., Bostian, K. A., et al. (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J. Biotechnol. 119, 219–244.CrossRefPubMedGoogle Scholar
  23. 23.
    Diel, P., Smolnikar, K., Schulz, T., Laudenbach-Leschowski, U., Michna, H., and Vollmer, G. (2001) Phytoestrogens and carcinogenesis-differential effects of genistein in experimental models of normal and malignant rat endometrium. Hum. Reprod. 16, 997–1006.CrossRefPubMedGoogle Scholar
  24. 24.
    Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. A. (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. U. S. A. 93, 5925–5930.CrossRefPubMedGoogle Scholar
  25. 25.
    Okada, A., Ohta, Y., Buchanan, D. L., Sato, T., Inoue, S., Hiroi, H., et al. (2002) Changes in ontogenetic expression of estrogen receptor alpha and not of estrogen receptor beta in the female rat reproductive tract. J. Mol. Endocrinol. 28, 87–97.CrossRefPubMedGoogle Scholar
  26. 26.
    Matthews, J., and Gustafsson, J. A. (2003) Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol. Interv. 3, 281–292.CrossRefPubMedGoogle Scholar
  27. 27.
    Moriarty, K., Kim, K. H., and Bender, J. R. (2006) Minireview: estrogen receptor-mediated rapid signaling. Endocrinology 147, 5557–5563.CrossRefPubMedGoogle Scholar
  28. 28.
    Hall, J. M., and McDonnell, D. P. (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol. Interv. 5, 343–357.CrossRefPubMedGoogle Scholar
  29. 29.
    Filardo, E. J., and Thomas, P. (2005) GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release. Trends Endocrinol. Metab. 16, 362–367.CrossRefPubMedGoogle Scholar
  30. 30.
    Bjornstrom, L., and Sjoberg, M. (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol. Endocrinol. 19, 833–842.CrossRefPubMedGoogle Scholar
  31. 31.
    Levin, E. R. (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol. Endocrinol. 19, 1951–1959.CrossRefPubMedGoogle Scholar
  32. 32.
    Houston, K. D., Copland, J. A., Broaddus, R. R., Gottardis, M. M., Fischer, S. M., and Walker, C. L. (2003) Inhibition of proliferation and estrogen receptor signaling by peroxisome proliferator-activated receptor gamma ligands in uterine leiomyoma. Cancer Res. 63, 1221–1227.PubMedGoogle Scholar
  33. 33.
    Rhen, T., Grissom, S., Afshari, C., and Cidlowski, J. A. (2003) Dexamethasone blocks the rapid biological effects of 17beta-estradiol in the rat uterus without antagonizing its global genomic actions. FASEB J. 17, 1849–1870.CrossRefPubMedGoogle Scholar
  34. 34.
    Kazi, A. A., Jones, J. M., and Koos, R. D. (2005) Chromatin immunoprecipitation analysis of gene expression in the rat uterus in vivo: estrogen-induced recruitment of both estrogen receptor alpha and hypoxia-inducible factor 1 to the vascular endothelial growth factor promoter. Mol. Endocrinol. 19, 2006–2019.CrossRefPubMedGoogle Scholar
  35. 35.
    Li, X. H., and Ong, D. E. (2003) Cellular retinoic acid-binding protein II gene expression is directly induced by estrogen, but not retinoic acid, in rat uterus. J. Biol. Chem. 278, 35819–35825.CrossRefPubMedGoogle Scholar
  36. 36.
    Wu, X., Pang, S. T., Sahlin, L., Blanck, A., Norstedt, G., and Flores-Morales, A. (2003) Gene expression profiling of the effects of castration and estrogen treatment in the rat uterus. Biol. Reprod. 69, 1308–1317.CrossRefPubMedGoogle Scholar
  37. 37.
    Moggs, J. G., Tinwell, H., Spurway, T., Chang, H. S., Pate, I., Lim, F. L., et al. (2004) Phenotypic anchoring of gene expression changes during estrogen-induced uterine growth. Environ. Health Perspect. 112, 1589–1606.CrossRefPubMedGoogle Scholar
  38. 38.
    Naciff, J. M., Overmann, G. J., Torontali, S. M., Carr, G. J., Khambatta, Z. S., Tiesman, J. P., et al. (2007) Uterine temporal response to acute exposure to 17{alpha}-ethinyl estradiol in the immature rat. Toxicol. Sci. 97, 467–490.CrossRefPubMedGoogle Scholar
  39. 39.
    Heryanto, B., Lipson, K. E., and Rogers, P. A. (2003) Effect of angiogenesis inhibitors on oestrogen-mediated endometrial endothelial cell proliferation in the ovariectomized mouse. Reproduction 125, 337–346.CrossRefPubMedGoogle Scholar
  40. 40.
    Naciff, J. M., Overmann, G. J., Torontali, S. M., Carr, G. J., Tiesman, J. P., Richardson, B. D., and Daston, G. P. (2003) Gene expression profile induced by 17 alpha-ethynyl estradiol in the prepubertal female reproductive system of the rat. Toxicol. Sci. 72, 314–330.CrossRefPubMedGoogle Scholar
  41. 41.
    Naciff, J. M., Overmann, G. J., Torontali, S. M., Carr, G. J., Tiesman, J. P., and Daston, G. P. (2004) Impact of the phytoestrogen content of laboratory animal feed on the gene expression profile of the reproductive system in the immature female rat. Environ. Health Perspect. 112, 1519–1526.CrossRefPubMedGoogle Scholar
  42. 42.
    Helvering, L. M., Adrian, M. D., Geiser, A. G., Estrem, S. T., Wei, T., Huang, S., et al. U. (2005) Differential effects of estrogen and raloxifene on messenger RNA and matrix metalloproteinase 2 activity in the rat uterus. Biol. Reprod. 72, 830–841.CrossRefPubMedGoogle Scholar
  43. 43.
    Creasy, D. M. (1997) Evaluation of testicular toxicity in safety evaluation studies: the appropriate use of spermatogenic staging. Toxicol. Pathol. 25, 119–131.CrossRefPubMedGoogle Scholar
  44. 44.
    Stewart, J., and Turner, K. J. (2005) Inhibin B as a potential biomarker of testicular toxicity. Cancer Biomarkers 1, 75–91.PubMedGoogle Scholar
  45. 45.
    Murugesan, P., Balaganesh, M., Balasubramanian, K., and Arunakaran, J. (2007) Effects of polychlorinated biphenyl (Aroclor 1254) on steroidogenesis and antioxidant system in cultured adult rat Leydig cells. J. Endocrinol. 192, 325–338.CrossRefPubMedGoogle Scholar
  46. 46.
    Adachi, T., Koh, K. B., Tainaka, H., Matsuno, Y., Ono, Y., Sakurai, K., Fet al. (2004) Toxicogenomic difference between diethylstilbestrol and 17beta-estradiol in mouse testicular gene expression by neonatal exposure. Mol. Reprod. Dev. 67, 19–25.CrossRefPubMedGoogle Scholar
  47. 47.
    Adachi, T., Ono, Y., Koh, K. B., Takashima, K., Tainaka, H., Matsuno, Y., et al. (2004) Long-term alteration of gene expression without morphological change in testis after neonatal exposure to genistein in mice: toxicogenomic analysis using cDNA microarray. Food Chem. Toxicol. 42, 445–452.CrossRefPubMedGoogle Scholar
  48. 48.
    Moustafa, G. G., Ibrahim, Z. S., Hashimoto, Y., Alkelch, A. M., Sakamoto, K. Q., Ishizuka, M., and Fujita, S. (2007) Testicular toxicity of profenofos in matured male rats. Arch Toxicol. 81, 875–881.CrossRefPubMedGoogle Scholar
  49. 49.
    Richburg, J. H., Johnson, K. J., Schoenfeld, H. A., Meistrich, M. L., and Dix, D. J. (2002) Defining the cellular and molecular mechanisms of toxicant action in the testis. Toxicol. Lett. 135, 167–183.CrossRefPubMedGoogle Scholar
  50. 50.
    Shultz, V. D., Phillips, S., Sar, M., Foster, P. M., and Gaido, K. W. (2001) Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol. Sci. 64, 233–242.CrossRefPubMedGoogle Scholar
  51. 51.
    Tully, D. B., Bao, W., Goetz, A. K., Blystone, C. R., Ren, H., Schmid, J. E., et al. (2006) Gene expression profiling in liver and testis of rats to characterize the toxicity of triazole fungicides. Toxicol. Appl. Pharmacol. 215, 260–273.CrossRefPubMedGoogle Scholar
  52. 52.
    Rockett, J. C., Christopher Luft, J., Brian Garges, J., Krawetz, S. A., Hughes, M. R., Hee Kirn, K., et al. (2001) Development of a 950-gene DNA array for examining gene expression patterns in mouse testis. Genome Biol. 2, 1–10.Google Scholar
  53. 53.
    Ryu, J. Y., Lee, B. M., Kacew, S., and Kim, H. S. (2007) Identification of differentially expressed genes in the testis of Sprague-Dawley rats treated with di(n-butyl) phthalate. Toxicology 234, 103–112.CrossRefPubMedGoogle Scholar
  54. 54.
    Page, B. D., and Lacroix, G. M. (1995) The occurrence of phthalate ester and di-2-ethylhexyl adipate plasticizers in Canadian packaging and food sampled in 1985–1989: a survey. Food Addit. Contam. 12, 129–151.PubMedGoogle Scholar
  55. 55.
    Saillenfait, A. M., Payan, J. P., Fabry, J. P., Beydon, D., Langonne, I., Gallissot, F., and Sabate, J. P. (1998) Assessment of the developmental toxicity, metabolism, and placental transfer of di-n-butyl phthalate administered to pregnant rats. Toxicol. Sci. 45, 212–224.PubMedGoogle Scholar
  56. 56.
    Mylchreest, E., Cattley, R. C., and Foster, P. M. (1998) Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol. Sci. 43, 47–60.PubMedGoogle Scholar
  57. 57.
    Thompson, C. J., Ross, S. M., and Gaido, K. W. (2004) Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism. Endocrinology 145, 1227–1237.CrossRefPubMedGoogle Scholar
  58. 58.
    Fukushima, T., Yamamoto, T., Kikkawa, R., Hamada, Y., Komiyama, M., Mori, C., and Horii, I. (2005) Effects of male reproductive toxicants on gene expression in rat testes. J. Toxicol. Sci. 30, 195–206.CrossRefPubMedGoogle Scholar
  59. 59.
    Pelletier, G., Li, S., Luu-The, V., Tremblay, Y., Belanger, A., and Labrie, F. (2001) Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450(scc), 3 beta-hydroxysteroid dehydrogenase and cytochrome P450(c17)) in rat adrenal cortex and gonads. J. Endocrinol. 171, 373–383.CrossRefPubMedGoogle Scholar
  60. 60.
    Dalla Valle, L., Vianello, S., Belvedere, P., and Colombo, L. (2002) Rat cytochrome P450c17 gene transcription is initiated at different start sites in extraglandular and glandular tissues. J. Steroid Biochem. Mol. Biol. 82, 377–384.CrossRefPubMedGoogle Scholar
  61. 61.
    Kaplowitz, N. (2005) Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 4, 489–499.CrossRefPubMedGoogle Scholar
  62. 62.
    Liguori, M. J., and Waring, J. F. (2006) Investigations toward enhanced understanding of hepatic idiosyncratic drug reactions. Expert Opin. Drug Metab. Toxicol. 2, 835–846.CrossRefPubMedGoogle Scholar
  63. 63.
    Uetrecht, J. (2007) Idiosyncratic drug reactions: current understanding. Annu. Rev. Pharmacol. Toxicol. 47, 513–539.CrossRefPubMedGoogle Scholar
  64. 64.
    Waring, J. F., and Anderson, M. G. (2005) Idiosyncratic toxicity: mechanistic insights gained from analysis of prior compounds. Curr. Opin. Drug Discov. Dev. 8, 59–65.Google Scholar
  65. 65.
    Fielden, M. R., and Halbert, D. N. (2007) Iconix Biosciences, Inc. Pharmacogenomics 8, 401–405.CrossRefPubMedGoogle Scholar
  66. 66.
    Leone, A. M., Kao, L. M., McMillian, M. K., Nie, A. Y., Parker, J. B., Kelley, M. F., et al. (2007) Evaluation of felbamate and other antiepileptic drug toxicity potential based on hepatic protein covalent binding and gene expression. Chem. Res. Toxicol. 20, 600–608.CrossRefPubMedGoogle Scholar
  67. 67.
    Dieckhaus, C. M., Thompson, C. D., Roller, S. G., and Macdonald, T. L. (2002) Mechanisms of idiosyncratic drug reactions: the case of felbamate. Chem. Biol. Interact. 142, 99–117.CrossRefPubMedGoogle Scholar
  68. 68.
    Naito, Y., Kuroda, M., Uchiyama, K., Mizushima, K., Akagiri, S., Takagi, T., et al. (2006) Inflammatory response of esophageal epithelium in combined-type esophagitis in rats: a transcriptome analysis. Int. J. Mol. Med. 18, 821–828.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wayne R. Buck
    • 1
  • Jeffrey F. Waring
    • 1
  • Eric A. Blomme
    • 1
  1. 1.Department of Cellular and Molecular ToxicologyAbbott LaboratoriesAbbott Park

Personalised recommendations