Skip to main content

Infection of Human Monocyte-Derived Macrophages With Coxiella burnetii

  • Protocol
Book cover Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 431))

Summary

Coxiella burnetii, the agent of Q fever, is an obligate intracellular bacterium that has a tropism for cells of the mononuclear phagocyte system. Following internalization, C. burnetii remains in a phagosome that ultimately matures into a vacuole with lysosomal characteristics that supports pathogen replication. Most in vitro investigations of Coxiella –macrophage interactions have employed continuous cell lines. Although these studies have been informative, genetic alterations of immortalized cells may result in attenuated biological responses to infection relative to primary cells. Consequently, primary macrophages are preferred as in vitro model systems. Here, we describe procedures for propagation and isolation of C. burnetii from cell culture and the use of these preparations to infect primary macrophages derived from human peripheral blood monocytes. Both virulent phase I and avirulent phase II C. burnetii productively infect human monocyte-derived macrophages (MDMs) and replicate with approximately the same kinetics, thereby providing a more physiologically relevant in vitro model system to study the infectious process of this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baca, O. G. and Paretsky, D. (1983) Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiol Rev. 47, 127–149.

    CAS  PubMed  Google Scholar 

  2. Babudieri, C. (1959) Q fever: a zoonosis. Adv. Vet. Sci. 5, 81–84.

    Google Scholar 

  3. Hilbink, F., Penrose, M., Kovacova, E., and Kazar, J. (1993) Q fever is absent from New Zealand. Int. J. Epidemiol. 22, 945–949.

    Article  CAS  PubMed  Google Scholar 

  4. Palmer, S. R. and Key, D. W. (1983) Placentitis and abortion in goats and sheep in Ontario caused by Coxiella burnetii. Can. Vet. J. 24, 60–63.

    CAS  PubMed  Google Scholar 

  5. Maurin, M.and Raoult, D. (1999) Q fever. Clin. Microbiol. Rev. 12, 518–553.

    CAS  PubMed  Google Scholar 

  6. Benenson, A. S. and Tigertt, W. D. (1956) Studies on Q fever in man. Trans. Assoc. Am. Physicians. 69, 98–104.

    CAS  PubMed  Google Scholar 

  7. Moos, A. and Hackstadt, T. (1987) Comparative virulence of in tra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect. Immun. 55, 1144–1150.

    CAS  PubMed  Google Scholar 

  8. Hatchette, T. F., Hudson, R. C., Schlech, W. F., Campbell, N. A., Hatchette, J. E., Ratnam, S., et al. (2001) Goat-associated Q fever: a new disease in Newfoundland. Emerg. Infect. Dis. 7, 413–419.

    CAS  PubMed  Google Scholar 

  9. Heinzen, R. A., Scidmore, M.A., Rockey, D. D., and Hackstadt, T. (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64, 796–809.

    CAS  PubMed  Google Scholar 

  10. Ghigo, E., Honstettre, A., Capo, C., Gorvel, J. P., Raoult, D., and Mege, J. L. (2004) Link between impaired maturation of phagosomes and defective Coxiella burnetii killing in patients with chronic Q fever. J. Infect. Dis. 190, 1767–1772.

    Article  CAS  PubMed  Google Scholar 

  11. Brennan, R. E., Russell, K., Zhang, G., and Samuel, J. E. (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect. Immun. 72, 6666–6675.

    Article  CAS  PubMed  Google Scholar 

  12. Miller, J. D., Curns, A. T., and Thompson, H.A. (2004) A growth study of Coxiella burnetii Nine Mile Phase I and Phase II in fibroblasts. FEMS Immunol. Med. Microbiol. 42, 291–297.

    Article  CAS  PubMed  Google Scholar 

  13. Weiss, E., Coolbaugh, J. C., and Williams, J. C. (1975) Separation of viable Rickettsia typhi from yolk sac and L cell host components by renografin density gradient centrifugation. Appl. Microbiol. 30, 456–463.

    CAS  PubMed  Google Scholar 

  14. Samuel, J. E., Frazier, M.E., Kahn, M.L., Thomashow, L. S., and Mallavia, L. P. (1983) Isolation and characterization of a plasmid from phase I Coxiella burnetii. Infect. Immun. 41, 488–493.

    CAS  PubMed  Google Scholar 

  15. Williams, J. C., Peacock, M.G., and McCaul, T. F. (1981) Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect. Immun. 32, 840–851.

    CAS  PubMed  Google Scholar 

  16. Stein, A., Louveau, C., Lepidi, H., Ricci, F., Baylac, P., Davoust, B., et al. (2005) Q fever pneumonia: virulence of Coxiella burnetii pathovars in a murine model of aerosol infection. Infect. Immun. 73, 2469–2477.

    Article  CAS  PubMed  Google Scholar 

  17. Govorkova, E. A., Murti, G., Meignier, B., de Taisne, C., and Webster, R. G. (1996) African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J. Virol. 70, 5519–5524.

    CAS  PubMed  Google Scholar 

  18. Burton, P. R., Stueckemann, J., Welsh, R. M., and Paretsky, D. (1978) Some ultrastructural effects of persistent infections by the rickettsia Coxiella burnetii in mouse L cells and green monkey kidney (Vero) cells. Infect. Immun. 21, 556–566.

    CAS  PubMed  Google Scholar 

  19. Policastro, P. F., Peacock, M.G., and Hackstadt, T. (1996) Improved plaque assays for Rickettsia prowazekii in Vero 76 cells. J. Clin. Microbiol. 34, 1944–1948.

    CAS  PubMed  Google Scholar 

  20. Coleman, S. A., Fischer, E. R., Howe, D., Mead, D. J., and Heinzen, R. A. (2004) Temporal analysis of Coxiella burnetii morphological differentiation. J. Bacteriol. 186, 7344–7352.

    Article  CAS  PubMed  Google Scholar 

  21. Zamboni, D. S. and Rabinovitch, M.(2003) Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect. Immun. 71, 1225–1233.

    Article  CAS  PubMed  Google Scholar 

  22. Beron, W., Gutierrez, M.G., Rabinovitch, M., and Colombo, M.I. (2002) Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect. Immun. 70, 5816–5821.

    Article  CAS  PubMed  Google Scholar 

  23. Meconi, S., Jacomo, V., Boquet, P., Raoult, D., Mege, J. L., and Capo, C. (1998) Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes. Infect. Immun. 66, 5527–5533.

    CAS  PubMed  Google Scholar 

  24. Baca, O. G., Roman, M.J., Glew, R. H., Christner, R. F., Buhler, J. E., and Aragon, A. S. (1993) Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infect. Immun. 61, 4232–4239.

    CAS  PubMed  Google Scholar 

  25. Veras, P. S., de Chastellier, C., Moreau, M.F., Villiers, V., Thibon, M., Mattei, D., et al. (1994) Fusion between large phagocytic vesicles: targeting of yeast and other particulates to phagolysosomes that shelter the bacterium Coxiella burnetii or the protozoan Leishmania amazonensis in Chinese hamster ovary cells. J. Cell Sci, 107, 3065–3076.

    CAS  PubMed  Google Scholar 

  26. Baca, O. G., Akporiaye, E. T., Aragon, A. S., Martinez, I. L., Robles, M.V., and Warner, N. L. (1981) Fate of phase I and phase II Coxiella burnetii in several macrophage-like tumor cell lines. Infect. Immun. 33, 258–266.

    CAS  PubMed  Google Scholar 

  27. Hackstadt, T. (1996) Biosafety concerns and Coxiella burnetii. Trends Microbiol. 4, 341–342.

    Article  CAS  PubMed  Google Scholar 

  28. Wiebe, M.E., Burton, P. R., and Shankel, D. M.(1972) Isolation and characterization of two cell types of Coxiella burnetii phase I. J. Bacteriol. 110, 368–377.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dale Howe and Diane Cockrell for critical review of this manuscript. This research was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shannon, J.G., Heinzen, R.A. (2008). Infection of Human Monocyte-Derived Macrophages With Coxiella burnetii . In: DeLeo, F.R., Otto, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology™, vol 431. Humana Press. https://doi.org/10.1007/978-1-60327-032-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-032-8_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-740-2

  • Online ISBN: 978-1-60327-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics