Advertisement

Synthesis and Characterization of Polymer Nanocarriers for the Targeted Delivery of Therapeutic Enzymes

  • Eric Simone
  • Thomas Dziubla
  • Vladimir Shuvaev
  • Vladimir R. Muzykantov
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 610)

Abstract

Protein drugs, such as recombinant enzymes useful for detoxification and replacement therapies, have extraordinary specificity and potency. However, inherently inadequate delivery to target sites and rapid inactivation limit their medical utility. Using chaperone polymeric particles designed within an injectible size range (sub-micron) may help solve these shortcomings. Such nanocarriers would (i) prevent premature inactivation of encapsulated therapeutic protein cargoes, (ii) provide a carrier that can be surface decorated by targeting ligands, and (iii) optimize sub-cellular localization of the drug. This chapter describes the techniques successfully employed for the preparation of polymer nanocarriers (PNC) loaded with the antioxidant enzyme, catalase, and targeted to endothelial cells. Methods of PNC synthesis, loading with catalase, characterization, coupling of a targeting moiety, and in vitro testing of the enzymatic and targeting activities are provided here. Advantages and disadvantages of specific designs are discussed. Due to the modular nature of the targeting methodology employed, it is believed that these protocols will provide a solid foundation for the formulation of a wide variety of enzymatic drug targeting strategies.

Key words

Polymer biomaterials nanocarriers drug delivery enzyme therapy catalase antioxidants oxidative stress vascular endothelium 

References

  1. 1.
    Harker, L.A., Hanson, S.R., and Kelly, A.B. (1997) Thromb. Haemost. 78, 736–741.PubMedGoogle Scholar
  2. 2.
    Wieland, H.A., Laux, V., Kozian, D., and Lorenz, M. (2003) Curr. Opin. Investig. Drugs 4, 264–271.PubMedGoogle Scholar
  3. 3.
    Barnes, P.J. (2003) Cytokine Growth Factor Rev. 14, 511–522.CrossRefPubMedGoogle Scholar
  4. 4.
    Burke, F. (1999) Cytokines Cell Mol. Ther. 5, 51–61.PubMedGoogle Scholar
  5. 5.
    Younes, H.M. and Amsden, B.G. (2002) J. Pharm. Sci. 91, 2–17.CrossRefPubMedGoogle Scholar
  6. 6.
    Bremer, U., Horres, C.R., and Francoeur, M.L. (1997) Pharm. Biotechnol. 10, 239–254.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, R.R. and Mooney, D.J. (2003) Pharm. Res. 20, 1103–1112.CrossRefPubMedGoogle Scholar
  8. 8.
    Peppas, N.A., Wood, K.M., and Blanchette, J.O. (2004) Expert. Opin. Biol. Ther. 4, 881–887.CrossRefPubMedGoogle Scholar
  9. 9.
    Rosier, R.N., O’Keefe, R.J., and Hicks, D.G. (1998) Clin. Orthop. Relat. Res., S294–S300.Google Scholar
  10. 10.
    Barnes, P.J. and Hansel, T.T. (2004) Lancet 364, 985–996.CrossRefPubMedGoogle Scholar
  11. 11.
    Rosenblum, J.S. and Kozarich, J.W. (2003) Curr. Opin. Chem. Biol. 7, 496–504.CrossRefPubMedGoogle Scholar
  12. 12.
    Schimmoller, F., Higaki, J.N., and Cordell, B. (2002) Curr. Pharm. Des. 8, 2521–2531.CrossRefPubMedGoogle Scholar
  13. 13.
    Layer, P., Keller, J., and Lankisch, P.G. (2001) Curr. Gastroenterol. Rep. 3, 101–108.CrossRefPubMedGoogle Scholar
  14. 14.
    Meikle, P.J. and Hopwood, J.J. (2003) Eur. J. Pediatr. 162(Suppl 1), S34–S37.CrossRefPubMedGoogle Scholar
  15. 15.
    Mignani, R. and Cagnoli, L. (2004) J. Nephrol. 17, 354–363.PubMedGoogle Scholar
  16. 16.
    Thorpe, P.E. (2004) Clin. Cancer. Res. 10, 415–427.CrossRefPubMedGoogle Scholar
  17. 17.
    Foster, C.A. (1996) J. Allergy. Clin. Immunol. 98, S270–S277.CrossRefPubMedGoogle Scholar
  18. 18.
    Muzykantov, V.R. (2001) J. Control. Release 71, 1–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Reichert, J.M. (2006) Trends Biotechnol. 24, 293–298.CrossRefPubMedGoogle Scholar
  20. 20.
    Reichert, J.M. (2004) Regul. Aff. J 15, 491–497.Google Scholar
  21. 21.
    Rao, K.P. (1995) J. Biomater. Sci. Polym. Ed. 7, 623–645.PubMedGoogle Scholar
  22. 22.
    Moghimi, S.M. and Szebeni, J. (2003) Prog. Lipid. Res. 42, 463–478.CrossRefPubMedGoogle Scholar
  23. 23.
    Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. (2000) J. Control Release 65, 271–284.CrossRefPubMedGoogle Scholar
  24. 24.
    Torchilin, V.P. (2000) Eur. J. Pharm. Sci. 11 (Suppl 2), S81–S91.CrossRefPubMedGoogle Scholar
  25. 25.
    Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V., and Langer, R. (1994) Science 263, 1600–1603.CrossRefPubMedGoogle Scholar
  26. 26.
    Moghimi, S.M., Hunter, A.C., and Murray, J.C. (2001) Pharmacol. Rev. 53, 283–318.PubMedGoogle Scholar
  27. 27.
    Muro, S., Muzykantov, V.R., and Murciano, J.C. (2004) Methods Mol. Biol. 283, 21–36.PubMedGoogle Scholar
  28. 28.
    Dziubla, T.D., Karim, A., and Muzykantov, V.R. (2005) J. Control Release 102, 427–439.CrossRefPubMedGoogle Scholar
  29. 29.
    Simone, E.A., Dziubla, T.D., Colon-Gonzalez, F., Discher, D.E., and Muzykantov, V.R. (2007) Biomacromolecules 8, 3914–3921.CrossRefPubMedGoogle Scholar
  30. 30.
    Shuvaev, V.V., Dziubla, T., Wiewrodt, R., and Muzykantov, V.R. (2004) Methods Mol. Biol. 283, 3–19.PubMedGoogle Scholar
  31. 31.
    Sims, G.E. and Snape, T.J. (1980) Anal. Biochem. 107, 60–63.CrossRefPubMedGoogle Scholar
  32. 32.
    Muro, S., Dziubla, T., Qiu, W., Leferovich, J., Cui, X., Berk, E., and Muzykantov, V.R. (2006) J. Pharmacol. Exp. Ther. 317, 1161–1169.CrossRefPubMedGoogle Scholar
  33. 33.
    Muro, S., Cui, X., Gajewski, C., Murciano, J.C., Muzykantov, V.R., and Koval, M. (2003) Am. J. Physiol. Cell. Physiol. 285, C1339–C1347.PubMedGoogle Scholar
  34. 34.
    Discher, D.E. and Eisenberg, A. (2002) Science 297, 967–973.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, L. and Eisenberg, A. (1995) Science 268, 1728–1731.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Eric Simone
    • 1
  • Thomas Dziubla
    • 2
    • 3
  • Vladimir Shuvaev
    • 4
  • Vladimir R. Muzykantov
    • 5
  1. 1.Vertex Pharmaceuticals, Inc, Formulation DevelopmentCambridgeUSA
  2. 2.Department of Pharmacology and Institute for Environmental MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  3. 3.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA
  4. 4.Institute for Environmental MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  5. 5.Department of Pharmacology, Institute for Environmental Medicine, and Institute for Translational Medicine and TherapeuticsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations