Advertisement

Preparation of Drug-Loaded Polymeric Nanoparticles and Evaluation of the Antioxidant Activity Against Lipid Peroxidation

  • Adriana R. Pohlmann
  • Scheila Rezende Schaffazick
  • Tânia B. Creczynski-Pasa
  • Sílvia S. Guterres
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 610)

Abstract

Antioxidants have been found to be effective as prophylatic and therapeutic agents for different diseases such as diabetes, cancer, and neurodegenerative disorders. However, antioxidant substances can present poor solubility in water, inefficient permeability, gastrointestinal degradation, first-pass effect, and/or instability during storage. These drawbacks can be potentially circumvented by encapsulating the susceptible antioxidants. Polymeric nanoparticles (nanocapsules or nanospheres) have been used to improve the drug efficacy and release. Our group has shown that the in vitro antioxidant effect of melatonin against lipid peroxidation in microsomes and liposomes can be improved by encapsulation of the antioxidant drug in polymeric nanoparticles.

Key words

Polymeric nanoparticles nanospheres nanocapsules antioxidant drug melatonin lipid peroxidation microsomes liposomes 

Notes

Acknowledgments

The authors acknowledge the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Fundação de Amparo à Pesquisa do Estado de Santa Catarina (FAPESC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Rede Nanocosméticos CNPq/MCT-Brazil.

References

  1. 1.
    Brigger, I., Dubernet, C., and Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631–651.CrossRefPubMedGoogle Scholar
  2. 2.
    Sahoo, S.K. and Labhasetwar, V. (2003) Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8, 1112–1120.CrossRefPubMedGoogle Scholar
  3. 3.
    Pinto Reis, C., Neufeld, R.J., Ribeiro, A.J., and Veiga, F. (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. 2, 8–21.Google Scholar
  4. 4.
    Couvreur, P., Barrat, G., Fattal, E., Legrand, P., and Vauthier, C. (2002) Nanocapsule technology: A review. Crit. Rev.Ther. Drug Carrier Syst. 19, 99–134.CrossRefPubMedGoogle Scholar
  5. 5.
    Legrand, P., Barratt, G., Mosqueira, V., Fessi, H., and Devissaguet, J.-P. (1999) Polymeric nanocapsules as drug delivery systems: A review. STP Pharma Sci. 9, 411–418.Google Scholar
  6. 6.
    Garcia-Garcia, E., Andrieux, K., Gil, S., and Couvreur, P. (2005) Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm. 298, 274–292.CrossRefPubMedGoogle Scholar
  7. 7.
    Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., and Rudzinski, W.E. (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20.CrossRefPubMedGoogle Scholar
  8. 8.
    Fahmy, T.M., Fong, P.M., Goyal, A., and Saltzman, W.M. (2005) Targeted for drug delivery. Nanotoday, 18–26.Google Scholar
  9. 9.
    Allémann, E., Leroux, J.-C., and Gurny, R. (1998) Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv. Drug Deliv. Rev. 34, 171–189.CrossRefPubMedGoogle Scholar
  10. 10.
    Guterres, S.S., Fessi, H., Barratt, G., Puisieux, F., and Devissaguet, J.-P. (1995) Poly(D,L-lactide) nanocapsules containing non-steroidal anti-inflammatory drugs: Gastrointestinal tolerance following intravenous and oral administration. Pharm. Res. 12, 1–3.CrossRefGoogle Scholar
  11. 11.
    Schaffazick, S.R., Pohlmann, A.R., Dalla-Costa, T., and Guterres, S.S. (2003) Freeze-drying polymeric colloidal suspensions: Nanocapsules, nanospheres and nanodispersion. A comparative study. Eur. J. Pharm. Biopharm. 56, 501–505.CrossRefPubMedGoogle Scholar
  12. 12.
    Beck, R.C.R., Pohlmann, A.R., and Guterres, S.S. (2004) Nanoparticle-coated microparticles: Preparation and characterization. J. Microencapsul. 21, 499–512.CrossRefPubMedGoogle Scholar
  13. 13.
    Kwon, S.S., Nam, Y.S., Lee, J.S., Ku, B.S., Han, S.H., Lee, J.Y., and Chang, I.S. (2002) Preparation and characterization of coenzyme Q10-loaded PMMA nanoparticles by a new emulsification process based on microfluidization. Colloids Surfaces A: Physicochem. Eng. Asp. 210, 95–104.CrossRefGoogle Scholar
  14. 14.
    Dziubla, T.D., Karim, A., Vladimir, R., and Muzykantov, V.R. (2005) Polymer nanocarriers protecting active enzyme cargo against proteolysis. J. Control. Release 102, 427–439.CrossRefPubMedGoogle Scholar
  15. 15.
    Ratnam, D.V., Ankola, D.D., Bhardwaj, V., Sahana, D.K., and Ravi Kumar, M.N.V. (2006) Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Rel. 113, 189–207.CrossRefGoogle Scholar
  16. 16.
    Palumbo, M., Russo, A., Cardile, V., Renis, M., Paolino, D., Puglisi, G., and Fresta, M. (2002) Improved antioxidant effect of idebenone-loaded polyethyl-2-cyanoacrylate nanocapsules tested on human fibroblast. Pharm. Res. 19, 71–78.CrossRefPubMedGoogle Scholar
  17. 17.
    Shea, T.B., Ortiz, D., Nicolosi, R.J., Kumar, R., and Watterson, A.C. (2005) Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta. J. Alzheimer’s Dis. 7, 297–301.Google Scholar
  18. 18.
    Bala, I., Bhardwaj, V., Hariharan, S., Kharade, S.V., Roy, N., and Kumar, M.N.V.R. (2006) Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. J. Drug. Target. 14,27–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Schaffazick, S.R., Pohlmann, A.R., de Cordova, C.A.S., Creczynski-Pasa, T.B., and Guterres, S.S. (2005) Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int. J. Pharm. 289, 209–213.CrossRefPubMedGoogle Scholar
  20. 20.
    Schaffazick, S.R., Pohlmann, A.R., Mezzalira, G., and Guterres, S.S. (2006) Development of nanocapsule suspensions and nanocapsule spray-dried powders containing melatonin. J. Braz. Chem. Soc. 17, 562–569.CrossRefGoogle Scholar
  21. 21.
    Pohlmann, A.R., Weiss, V., Mertins, O., Pesce da Silveira, N., and Guterres, S.S. (2002) Spray-dried indometacin-loaded polyester nanocapsules and nanospheres: Development, stability evaluation and nanostructure models. Eur. J. Pharm. Sci. 16, 305–312.CrossRefGoogle Scholar
  22. 22.
    Quintanar-Guerrero, D., Allémann, E., Fessi, H., and Doelker, E. (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24, 1113–1128.CrossRefPubMedGoogle Scholar
  23. 23.
    Ubrich, N., Schmidt, C., Bodmeier, R., Hoffman, M., and Maincent, P. (2005) Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. Int. J. Pharm. 288, 169–175.CrossRefPubMedGoogle Scholar
  24. 24.
    Alvarez-Román, R., Naik, A., Kalia, Y.N., Guy, R.H., and Fessi, H. (2004) Skin penetration and distribution of polymeric nanoparticles. J. Control. Rel. 99, 53–62.CrossRefGoogle Scholar
  25. 25.
    Fessi, H., Puisieux, F., Devissaguet, J.-P., Ammoury, N., and Benita, S. (1989) Nanocapsule Formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55, r1–r4.CrossRefGoogle Scholar
  26. 26.
    Fessi, H., Devissaguet, J.-P., Puisieux, F., and Thies, C. (1986) Procedé de préparation des systèmes colloidaux dispersibles d’une substance sous forme de nanoparticules. Fr. Patent Application No. 8618446.Google Scholar
  27. 27.
    Creczynski-Pasa, T.B. and Gräber, P. (1994) ADP binding and ATP synthesis by reconstituted H1 –ATPase from chloroplasts. FEBS Lett. 350, 195–198.CrossRefPubMedGoogle Scholar
  28. 28.
    Schenkman, J.B. and Cinti, D.L. (1978) Preparation of microsomes with calcium. Methods Enzymol. 52, 83–89.CrossRefPubMedGoogle Scholar
  29. 29.
    Cordova, C.A.S., Siqueira, I.R., Netto, C.A., Yunes, R.A., Volpato, A.M., Filho, V.C., Curi-Pedrosa, R., and Creczynski-Pasa, T.B. (2002) Protective properties of butanolic extract of the Calendula officinalis L.(marigold) against lipid peroxidation of rat liver microsomes and action as free radical scavenger. Redox Report 7, 95–102.CrossRefPubMedGoogle Scholar
  30. 30.
    Teixeira, A., Morfim, M.P., Cordova, C.A.S., Charão, C.C.T., Lima, V.R., and Creczynski-Pasa, T.B. (2003) Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxinitrite. J. Pineal Res. 35, 262–268.CrossRefPubMedGoogle Scholar
  31. 31.
    Validation of Analytical Procedures: Methodology, ICH-Harmonised Tripartity Guideline, IFPMA, Geneva, Switzerland, 1996.Google Scholar
  32. 32.
    The United States Pharmacopoeia. 27th Edn., The United State Phamacopoeial Convention, Rockville, USA, 2003.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Adriana R. Pohlmann
    • 1
  • Scheila Rezende Schaffazick
    • 2
  • Tânia B. Creczynski-Pasa
    • 3
  • Sílvia S. Guterres
    • 4
  1. 1.Instituto de Química da Universidade Federal do Rio Grande do Sul, UFRGSPorto AlegreBrazil
  2. 2.Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, UFRGSPorto AlegreBrazil
  3. 3.Departamento de Ciências FarmacêuticasUniversidade Federal de Santa Catarina, UFSCPorto AlegreBrazil
  4. 4.Faculdade de Farmácia da Universidade Federal do Rio Grande do Sul, UFRGSPorto AlegreBrazil

Personalised recommendations