Advertisement

Design, Synthesis, and Action of Antiatherogenic Antioxidants

  • Osamu Cynshi
  • Kunio Tamura
  • Etsuo Niki
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 610)

Abstract

Ample evidence supports the critical role of oxidized low-density lipoprotein (ox-LDL) in initiation and progression of atherosclerosis. Oxidation of LDL is a complex process involving several steps (processes) of reactions such as initiation and propagation. Both proteins and lipids in LDL undergo free radical-mediated oxidations leading to the formation of ox-LDL that plays a pivotal role in atherosclerosis. Antioxidants of various types (both aqueous and lipophilic) either arrest or retard the oxidation of LDL at various steps of the oxidation process (e.g., initiation or propagation). Certain lipophilic antioxidants act as the chain-terminating antioxidants leading to the inhibition of LDL oxidation. The current chapter describes the designing and efficacy of two novel lipophilic antioxidants (benzofuranol, BO-653 and aniline, BO-313) in inhibiting the LDL oxidation and atherogenesis in experimental animal model. Furthermore, the characteristics of an effective antioxidant to inhibit LDL oxidation and atherogenesis which dictates the designing of the antioxidant drug and its mechanism(s) of antiatherogenic action are discussed.

Key words

Antioxidant low-density lipoprotein (LDL) LDL oxidation thiobarbituric acid reactive substances (TBARS) gel permeation chromatography (GPC) Watanabe heritable hyperlipidemic (WHHL) rabbit atherosclerosis, 2,2’–azobis 2-amidinopropane (AAPH), lipoxygenase, N-(3,7,11,15-tetramethylhexadecyl)-3,4,5-trimethoxyaniline (BO-313) 4,6-Di-tert-butyl-2,3-dihydro-2,2-dipentyl-5-benzofuranol (BO-653) 

Notes

Acknowledgments

The authors thank Drs. T. Kodama at Tokyo University and T. Kita at Kyoto University for providing excellent advice on atherosclerosis in animal models. We also thank Drs. Y. Kawabe, Y. Kato, T. Suzuki, Y. Takashima, M. Takeda, H. Kaise, M. Kim, J. Aono, and Y. Ohba for their collaboration on this project in Chugai Pharmaceutical Co., Ltd. and Ms Ford Frances for her editorial assistance.

References

  1. 1.
    Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl. J. Med. 320, 915–924.CrossRefPubMedGoogle Scholar
  2. 2.
    Steinberg, D. and Witztum, J.L. (2002) Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105, 2107–2111.CrossRefPubMedGoogle Scholar
  3. 3.
    Kita, T., Nagano, Y., Yokode, M., Ishii, K., Kume, N., Ooshima, A., Yoshida, H., and Kawai, C. (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc. Natl. Acad. Sci. USA 84, 5928–5931.CrossRefPubMedGoogle Scholar
  4. 4.
    Mao, S.J., Yates, M.T., Rechtin, A.E., Jackson, R.L., and Van Sickle, W.A. (1991) Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits. J. Med. Chem. 34, 298–302.CrossRefPubMedGoogle Scholar
  5. 5.
    Bjorkhem, I., Henriksson-Freyschuss, A., Breuer, O., Diczfalusy, U., Berglund, L., and Henriksson, P. (1991) The antioxidant butyrate hydroxytoluene protects against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 11, 15–22.Google Scholar
  6. 6.
    Sparrow, C.P., Doebber, T.W., Olszewski, J., Wu, M.S., Ventre, J., Stevens, K.A., and Chao, Y.S. (1992) Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N, N ʹ-diphenyl-phenylenediamine. J. Clin. Invest. 89, 1885–1891.CrossRefPubMedGoogle Scholar
  7. 7.
    Tangirala, R.K., Casanada, F., Miller, E., Witztum, J.L., Steinberg, D., and Palinski, W. (1995) Effect of the antioxidant N, N ʹ-diphenyl 1, 4-phenylenediamine (DPPD) on atherosclerosis in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 15, 1625–1630.PubMedGoogle Scholar
  8. 8.
    Fruebis, J., Steinberg, D., Dresel, H.A., and Carew, T.E. (1994) A comparison of the antiatherogenic effects of probucol and of a structural analogue of probucol in low density lipoprotein receptor-deficient rabbits. J. Clin. Invest. 94, 392–398.CrossRefPubMedGoogle Scholar
  9. 9.
    Fruebis, J., Bird, D.A., Pattison, J., and Palinski, W. (1997) Extent of antioxidant protection of plasma LDL is not a predictor of the antiatherogenic effect of antioxidants. J. Lipid Res. 38, 2455–2464.PubMedGoogle Scholar
  10. 10.
    Reinoehl, J., Frankovich, D., Machado, C., Kawasaki, R., Baga, J.J., Pires, L.A., Steinman, R.T., Fromm, B.S., and Lehmann, M.H. (1996) Probucol-associated tachyarrhythmic events and QT prolongation: Importance of gender. Am. Heart J. 131, 1184–1191.CrossRefPubMedGoogle Scholar
  11. 11.
    Johansson, J., Olsson, A.G., Bergstrand, L., Elinder, L.S., Nilsson, S., Erikson, U., Molgaard, J., Holme, I., and Walldius, G. (1995) Lowering of HDL2b by probucol partly explains the failure of the drug to affect femoral atherosclerosis in subjects with hypercholesterolemia. A Probucol Quantitative Regression Swedish Trial (PQRST) Report. Arterioscler. Thromb. Vasc. Biol. 15, 1049–1056.PubMedGoogle Scholar
  12. 12.
    Upston, J.M., Terentis, A.C., and Stocker, R. (1999) Tocopherol-mediated peroxidation of lipoproteins: Implications for vitamin E as a potential antiatherogenic supplement. FASEB J. 13, 977–994.PubMedGoogle Scholar
  13. 13.
    Tamura, K., Kato, Y., Ishikawa, A., Himori, M., Yoshida, M., Takashima, Y., Suzuki, T., Kawabe, Y., Cynshi, O., Kodama, T., Niki, E., and Shimizu, M. (2003) Design and synthesis of 4, 6-di-tert-butyl-2, 3-dihydro-5-benzofuranols as a novel series of antiatherogenic antioxidants. J. Med. Chem. 46, 3083–3093.CrossRefPubMedGoogle Scholar
  14. 14.
    Ingold, K.U., Burton, G.W., Foster, D.O., Zuker, M., Hughes, L., Lacelle, S., Lusztyk, E., and Slaby, M. (1986) A new vitamin E analogue more active than alpha-tocopherol in the rat curative myopathy bioassay. FEBS Lett. 205, 117–120.CrossRefPubMedGoogle Scholar
  15. 15.
    Cynshi, O., and Stocker, R. (2005) Inhibition of lipoprotein lipid oxidation. Handb. Exp. Pharmacol. 170, 563–590.Google Scholar
  16. 16.
    Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345–1353.CrossRefPubMedGoogle Scholar
  17. 17.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  18. 18.
    Cynshi, O., Takashima, Y., Suzuki, T., Kawabe, Y., Ohba, Y., and Kodama, T. (1994) Characterization of aggregated low density lipoproteins induced by copper-catalyzed oxidation. J. Atheroscler. Thromb. 1, 87–97.PubMedGoogle Scholar
  19. 19.
    Kawabe, Y., Cynshi, O., Takashima, Y., Suzuki, T., Ohba, Y., and Kodama, T. (1994) Oxidation-induced aggregation of rabbit low-density lipoprotein by azo initiator. Arch. Biochem. Biophys. 310, 489–496.CrossRefPubMedGoogle Scholar
  20. 20.
    Cathcart, M.K., McNally, A.K., and Chisolm, G.M. (1991) Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex. J. Lipid. Res. 32, 63–70.PubMedGoogle Scholar
  21. 21.
    Yagi, K. (1998) Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol. Biol. 108, 101–106.PubMedGoogle Scholar
  22. 22.
    Koller, E., Quehenberger, O., Jurgens, G., Wolfbeis, O.S., and Esterbauer, H. (1986) Investigation of human plasma low density lipoprotein by three-dimensional fluorescence spectroscopy. FEBS Lett. 198, 229–234.CrossRefPubMedGoogle Scholar
  23. 23.
    Noguchi, N., Okimoto, Y., Tsuchiya, J., Cynshi, O., Kodama, T., and Niki, E. (1997) Inhibition of oxidation of low-density lipoprotein by a novel antioxidant, BO-653, prepared by theoretical design. Arch. Biochem. Biophys. 347, 141–147.CrossRefPubMedGoogle Scholar
  24. 24.
    Cynshi, O., Kawabe, Y., Suzuki, T., Takashima, Y., Kaise, H., Nakamura, M., Ohba, Y., Kato, Y., Tamura, K., Hayasaka, A., Higashida, A., Sakaguchi, H., Takeya, M., Takahashi, K., Inoue, K., Noguchi, N., Niki, E., and Kodama, T. (1998) Antiatherogenic effects of the antioxidant BO-653 in three different animal models. Proc. Natl. Acad. Sci. USA 95, 10123–10128.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Osamu Cynshi
    • 1
  • Kunio Tamura
    • 1
  • Etsuo Niki
    • 2
  1. 1.Fuji-gotemba Research LaboratoriesChugai Pharmaceutical Co., Ltd.ShizuokaJapan
  2. 2.Human Stress Signal Research Center, National Institute of Advanced Industrial Science and TechnologyOsakaJapan

Personalised recommendations