Advertisement

In Vivo Measurement of Tissue Oxygen Using Electron Paramagnetic Resonance Spectroscopy with Oxygen-Sensitive Paramagnetic Particle, Lithium Phthalocyanine

  • F. Hyodo
  • S. Matsumoto
  • E. Hyodo
  • A. Matsumoto
  • K. Matsumoto
  • M.C. Krishna
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 610)

Abstract

The partial pressure of oxygen (pO2) plays a determining role in the energy metabolism of aerobic cells. However, low pO2 level induces pathophysiological conditions such as tumor hypoxia, ischemia or reperfusion injury, and delayed/altered wound healing. Especially, pO2 level in the tumor is known to be related to tumor progression and effectiveness of radiotherapy. To monitor the pO2 levels in vivo, continuous wave (CW) and time-domain (TD) electron paramagnetic resonance (EPR) spectroscopy method was used, in which surface coil resonator and Lithium phthalocyanine (LiPc) as oxygen sensor were crucial. Once LiPc particles are embedded in a desired location of organ/tissue, the pO2 level can be monitored repeatedly and non-invasively. This method is based on the effect of oxygen concentration on the EPR spectra of LiPc which offers several advantages as follows: (1) high sensitivity, (2) minimum invasiveness, (3) repeated measurements, (4) absence of toxicity (non-toxic), and (5) measurement in a local region of the tissue with embedded LiPc. Therefore, in this chapter, we describe the method using CW and TD EPR spectroscopy with oxygen-sensitive particle, LiPc, for in vivo monitoring of oxygen.

Key words

Lithium phthalocyanine (LiPc) oxymetry in vivo tissue oxygen tumor EPR 

References

  1. 1.
    Gallez, B., Baudelet, C., and Jordan, B.F. (2004) Assessment of tumor oxygenation by electron paramagnetic resonance: Principles and applications. NMR Biomed. 17, 240–262.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu, S., Liu, W., Ding, W., Miyake, M., Rosenberg, G.A., and Liu, K.J. (2006) Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 26, 1274–1284.CrossRefPubMedGoogle Scholar
  3. 3.
    Sen, C.K., Khanna, S., Gordillo, G., Bagchi, D., Bagchi, M., and Roy, S. (2002) Oxygen, oxidants, and antioxidants in wound healing: An emerging paradigm. Ann. NY Acad. Sci. 957, 239–249.CrossRefPubMedGoogle Scholar
  4. 4.
    De Jaeger, K., Kavanagh, M.C., and Hill, R.P. (2001) Relationship of hypoxia to metastatic ability in rodent tumours. Br. J. Cancer. 84, 1280–1285.CrossRefPubMedGoogle Scholar
  5. 5.
    Elas, M., Ahn, K.H., Parasca, A., Barth, E.D., Lee, D., Haney, C., and Halpern, H.J. (2006) Electron paramagnetic resonance oxygen images correlate spatially and quantitatively with Oxylite oxygen measurements. Clin. Cancer Res. 12, 4209–4217.CrossRefPubMedGoogle Scholar
  6. 6.
    Ilangovan, G., Zweie, J.L., and Kuppusamy, P. (2004) Mechanism of oxygen-induced EPR line broadening in lithium phthalocyanine microparticles. J. Magn. Reson. 170, 42–48.CrossRefPubMedGoogle Scholar
  7. 7.
    Matsumoto, K., Subramanian, S., Devasahayam, N., Aravalluvan, T., Murugesan, R., Cook, J.A., Mitchell, J.B., and Krishna, M.C. (2006) Electron paramagnetic resonance imaging of tumor hypoxia: Enhanced spatial and temporal resolution for in vivo pO2 determination. Magn. Reson. Med. 55, 1157–1163.CrossRefPubMedGoogle Scholar
  8. 8.
    Subramanian, S., Matsumoto, K., Mitchell, J.B., and Krishna, M.C. (2004) Radio frequency continuous-wave and time-domain EPR imaging and Overhauser-enhanced magnetic resonance imaging of small animals: Instrumental developments and comparison of relative merits for functional imaging. NMR Biomed. 17, 263–294.CrossRefPubMedGoogle Scholar
  9. 9.
    Swartz, H.M. and Clarkson, R.B. (1998) The measurement of oxygen in vivo using EPR techniques. Phys. Med. Biol. 43, 1957–1975.CrossRefPubMedGoogle Scholar
  10. 10.
    Ilangovan, G., Bratasz, A., Li, H., Schmalbrock, P., Zweier, J.L., and Kuppusamy, P. (2004) In vivo measurement and imaging of tumor oxygenation using coembedded paramagnetic particulates. Magn. Reson. Med. 52, 650–657.CrossRefPubMedGoogle Scholar
  11. 11.
    Ilangovan, G., Li, H., Zweier, J.L., Krishna, M.C., Mitchell, J.B., and Kuppusamy, P. (2002) In vivo measurement of regional oxygenation and imaging of redox status in RIF-1 murine tumor: Effect of carbogen-breathing. Magn. Reson. Med . 48, 723–730.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu, K.J., Gast, P., Moussavi, M., Norby, S.W., Vahidi, N., Walczak, T., Wu, M., and Swartz, H.M. (1993) Lithium phthalocyanine: A probe for electron paramagnetic resonance oximetry in viable biological systems. Proc. Nat. Acad. Sci .USA 90, 5438–5442.CrossRefPubMedGoogle Scholar
  13. 13.
    Matsumoto, A., Matsumoto, S., Sowers, A.L., Koscielniak, J.W., Trigg, N.J., Kuppusamy, P., Mitchell, J.B., Subramanian, S., Krishna, M.C., and Matsumoto, K. (2005) Absolute oxygen tension (pO(2)) in murine fatty and muscle tissue as determined by EPR. Magn. Reson. Med. 54, 1530–1535.CrossRefPubMedGoogle Scholar
  14. 14.
    Swartz, H.M., Boyer, S., Gast, P., Glockner, J.F., Hu, H., Liu, K.J., Moussavi, M., Norby, S.W., Vahidi, N. et al. (1991) Measurements of pertinent concentrations of oxygen in vivo. Magn. Reson. Med. 20, 333–339.CrossRefPubMedGoogle Scholar
  15. 15.
    Goda, F., Liu, K.J., Walczak, T., O’Hara, J.A., Jiang, J., and Swartz, H.M. (1995) In vivo oximetry using EPR and India ink. Magn. Reson .Med. 33, 237–245.CrossRefPubMedGoogle Scholar
  16. 16.
    Swartz, H.M., Liu, K.J., Goda, F., and Walczak, T. (1994) India ink: A potential clinically applicable EPR oximetry probe. Magn. Reson. Med. 31, 229–232.CrossRefPubMedGoogle Scholar
  17. 17.
    Dunn, J.F. and Swartz, H.M. (2003) In vivo electron paramagnetic resonance oximetry with particulate materials. Methods 30, 159–166.CrossRefPubMedGoogle Scholar
  18. 18.
    Afeworki, M., Miller, N.R., Devasahayam, N., Cook, J., Mitchell, J.B., Subramanian, S., and Krishna, M.C. (1998) Preparation and EPR studies of lithium phthalocyanine radical as an oxymetric probe. Free Radic. Biol. Med. 25, 72–78.CrossRefPubMedGoogle Scholar
  19. 19.
    Yamada, K., Murugesan, R., Devasahayam, N., Cook, J.A., Mitchell, J.B., Subramanian, S., and Krishna, M.C. (2002) Evaluation and comparison of pulsed and continuous wave radiofrequency electron paramagnetic resonance techniques for in vivo detection and imaging of free radicals. J. Magn. Reson. 154, 287–297.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • F. Hyodo
    • 1
  • S. Matsumoto
    • 1
  • E. Hyodo
    • 1
  • A. Matsumoto
    • 1
  • K. Matsumoto
    • 1
  • M.C. Krishna
    • 1
  1. 1.Biophysical Spectroscopy Section, Radiation Biology BranchNational Cancer Institute, Center for Cancer ResearchBethesdaUSA

Personalised recommendations