Gene Therapy Techniques for the Delivery of Endothelial Nitric Oxide Synthase to the Lung for Pulmonary Hypertension

  • W. Deng
  • T.J. Bivalacqua
  • H.C. Champion
  • W.J. Hellstrom
  • Subramanyam N. Murthy
  • Philip J. Kadowitz
Part of the Methods in Molecular Biology book series (MIMB, volume 610)


Pulmonary hypertension (PH) is a serious, often fatal disease characterized by remodeling of the pulmonary vascular bed, increased pulmonary arterial pressure, and right heart failure. The increased vascular resistance in the pulmonary circulation is due to structural changes and increased vasoconstrictor tone. Although current therapies have prolonged survival, the long-term outcome is not favorable. Nitric oxide (NO) is synthesized by endothelial nitric oxide synthase (eNOS) and is important in regulating vascular resistance and in vascular remodeling in the lung. NO deficiency due to endothelial dysfunction plays an important role in the pathogenesis of PH. Therefore, local eNOS gene delivery to the lung is a promising approach for the treatment of PH. Adenoviral-mediated in vivo gene therapy and adult stem cell-based ex vivo gene therapy are two attractive current gene therapies for the treatment of cardiovascular and pulmonary diseases. In this chapter we describe the use of two gene transfer techniques, i.e., adenoviral gene transfer of eNOS and eNOS gene-modified rat marrow stromal cells, for eNOS gene delivery to the lung of laboratory animals for the treatment of PH.

Key words

Gene therapy pulmonary hypertension endothelial nitric oxide synthase adenovirus marrow stromal cells mesenchymal stem cells lung 


  1. 1.
    D’Alonzo, G.E., Barst, R.J., Ayres, S.M., Bergofsky, E.H., Brundage, B.H., Detre, K.M., Fishman, A.P., Goldring, R.M., Groves, B.M., and Kernis, J.T. (1991) Survival in patients with primary pulmonary hypertension. results from a national prospective registry. Ann. Intern. Med. 115, 343–349.PubMedGoogle Scholar
  2. 2.
    Rubin, L.J. (1997) Primary pulmonary hypertension. N. Engl. J. Med. 336, 111–117.CrossRefPubMedGoogle Scholar
  3. 3.
    Galie, N., Manes, A., Uguccioni, L., Serafini, F., De Rosa, M., Branzi, A., and Magnani, B. (1998) Primary pulmonary hypertension: insights into pathogenesis from epidemiology. Chest 114 (3 Suppl), 184S–194S.CrossRefPubMedGoogle Scholar
  4. 4.
    Peacock, A.J. (1999) Primary pulmonary hypertension. Thorax 54, 1107–1118.CrossRefPubMedGoogle Scholar
  5. 5.
    Runo, J.R. and Loyd, J.E. (2003) Primary pulmonary hypertension. Lancet 361, 1533–1544.CrossRefPubMedGoogle Scholar
  6. 6.
    Humbert, M., Sitbon, O., and Simonneau, G. (2004) Treatment of pulmonary arterial hypertension. N. Engl. J. Med. 351, 1425–1436.CrossRefPubMedGoogle Scholar
  7. 7.
    Mandegar, M., Fung, Y.C., Huang, W., Remillard, C.V., Rubin, L.J., and Yuan, J.X. (2004) Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc. Res. 68, 75–103.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee, A.J., Chiao, T.B., and Tsang, M.P. (2005) Sildenafil for pulmonary hypertension. Ann. Pharmacother. 39, 869–884.CrossRefPubMedGoogle Scholar
  9. 9.
    Nathan, S.D. (2005) Lung transplantation: disease-specific considerations for referral. Chest 127, 1006–1016.CrossRefPubMedGoogle Scholar
  10. 10.
    Palmer, R.M., Ferrige, A.G., and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526.CrossRefPubMedGoogle Scholar
  11. 11.
    Fleming, I. and Busse, R. (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1–R12.PubMedGoogle Scholar
  12. 12.
    Huang, P.L., Huang, Z., Mashimo, H., Bloch, K.D., Moskowitz, M.A., Bevan, J.A., and Fishman, M.C. (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242.CrossRefPubMedGoogle Scholar
  13. 13.
    Michelakis, E.D. (2003) The role of the NO axis and its therapeutic implications in pulmonary arterial hypertension. Heart Fail. Rev. 8, 5–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Nakamoto, T., Harasawa, H., Fuse, D., Amano, H., and Matsuda T. (2004) Nitric oxide and pulmonary hypertension. Nippon Rinsho 62 (Suppl 9), 522–526.PubMedGoogle Scholar
  15. 15.
    Farber, H.W. and Loscalzo, J. (2004) Pulmonary arterial hypertension. N. Engl. J. Med. 351, 1655–1665.CrossRefPubMedGoogle Scholar
  16. 16.
    Wilson, J.M. (1996) Adenoviruses as gene-delivery vehicles. N. Engl. J. Med. 334, 1185–1187.CrossRefPubMedGoogle Scholar
  17. 17.
    Brenner, M. (1999) Gene transfer by adenovectors. Blood 94, 3965–3967.PubMedGoogle Scholar
  18. 18.
    Nadeau, I. and Kamen, A. (2003) Production of adenovirus vector for gene therapy. Biotechnol. Adv. 20, 475–489.CrossRefPubMedGoogle Scholar
  19. 19.
    Lusky, M. (2005) Good manufacturing practice production of adenoviral vectors for clinical trials. Hum. Gene Ther. 16, 281–291.CrossRefPubMedGoogle Scholar
  20. 20.
    Lozier, J.N., Metzger, M.E., Donahue, R.E., and Morgan, R.A. (1999) Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity. Blood 94, 3968–3975.PubMedGoogle Scholar
  21. 21.
    Knorr, D. (1999) Serious Event on NIH Human Gene Transfer Protocol 9512-139. A Phase I Study of Adenovector-Mediated Gene Transfer to Liver in Adults With Partial Ornithine Transcarbamylase Deficiency. Bethesda, MD: Memorandum, National Institutes of Health, Office of Recombinant DNA Activities.Google Scholar
  22. 22.
    St George, J.A. (2003) Gene therapy progress and prospects: adenoviral vectors. Gene Ther. 10, 1135–1141.CrossRefPubMedGoogle Scholar
  23. 23.
    Tomanin, R. and Scarpa, M. (2004) Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr. Gene Ther. 4, 357–372.PubMedGoogle Scholar
  24. 24.
    Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I., and Frolova, G.P. (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6, 230–247.CrossRefPubMedGoogle Scholar
  25. 25.
    Prockop, D.J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., and Mavilio, F. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530.CrossRefPubMedGoogle Scholar
  27. 27.
    Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.CrossRefPubMedGoogle Scholar
  28. 28.
    Deng, W., Obrocka, M., Fischer, I., and Prockop, D.J. (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 282, 148–152.CrossRefPubMedGoogle Scholar
  29. 29.
    Grove, J.E., Bruscia, E., and Krause, D.S. (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22, 487–500.CrossRefPubMedGoogle Scholar
  30. 30.
    Cherington, V., Chiang, G.G., McGrath, C.A., Gaffney, A., Galanopoulos, T., Merrill, W., Bizinkauskas, C.B., Hansen, M., Sobolewski, J., Levine, P.H., Greenberger, J.S., and Hurwitz, D.R. (1998) Retroviral vector-modified bone marrow stromal cells secrete biologically active factor IX in vitro and transiently deliver therapeutic levels of human factor IX to the plasma of dogs after reinfusion. Hum. Gene Ther. 9, 1397–1407.CrossRefPubMedGoogle Scholar
  31. 31.
    Bianco, P., Riminucci, M., Gronthos, S., and Robey, P.G. (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180–192.CrossRefPubMedGoogle Scholar
  32. 32.
    Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J., and Kessler, P.D. (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98.CrossRefPubMedGoogle Scholar
  33. 33.
    Deng, W., Bivalacqua, T.J., Chattergoon, N.N., Hyman, A.L., Jeter, J.R., Jr., and Kadowitz, P.J. (2003) Adenoviral gene transfer of endothelial nitric oxide synthase: High level expression in ex vivo expanded marrow stromal cells. Am. J. Physiol. Cell Physiol. 285, C1322–C1329.PubMedGoogle Scholar
  34. 34.
    Deng, W., Bivalacqua, T.J., Chattergoon, N.N., Jeter, J.R., Jr., and Kadowitz, P.J. (2004) Engineering ex vivo-expanded marrow stromal cells to secrete calcitonin gene-related peptide using adenoviral vector. Stem Cells 22, 1279–1291.CrossRefPubMedGoogle Scholar
  35. 35.
    Kassem, M. (2004) Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 6, 369–374.CrossRefPubMedGoogle Scholar
  36. 36.
    Champion, H.C., Bivalacqua, T.J., D’Souza, F.M., Ortiz, L.A., Jeter, J.R., Toyoda, K., Heistad, D.D., Hyman, A.L., and Kadowitz, P.J. (1999) Gene transfer of endothelial nitric oxide synthase to the lung of the mouse in vivo. Effect on agonist-induced and flow-mediated vascular responses. Circ. Res. 84, 1422–1432.PubMedGoogle Scholar
  37. 37.
    Champion, H.C., Bivalacqua, T.J., Greenberg, S.S., Giles, T.D., Hyman, A.L., and Kadowitz, P.J. (2002) Adenoviral gene transfer of endothelial nitric-oxide synthase (eNOS) partially restores normal pulmonary arterial pressure in eNOS-deficient mice. Proc. Natl. Acad. Sci. USA 99, 13248–13253.CrossRefPubMedGoogle Scholar
  38. 38.
    Ortiz, L.A., Champion, H.C., Lasky, J.A., Gambelli, F., Gozal, E., Hoyle, G.W., Beasley, M.B., Hyman, A.L., Friedman, M., and Kadowitz, P.J. (2002) Enalapril protects mice from pulmonary hypertension by inhibiting TNF-mediated activation of NF-kappaB and AP-1. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L1209–L1221.PubMedGoogle Scholar
  39. 39.
    Nishida, K., Harrison, D.G., Navas, J.P., Fisher, A.A., Dockery, S.P., Uematsu, M., Nerem, R.M., Alexander, R.W., and Murphy, T.J. (1992) Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J. Clin. Invest. 90, 2092–2096.CrossRefPubMedGoogle Scholar
  40. 40.
    Ooboshi, H., Chu, Y., Rios, C.D., Faraci, F.M., Davidson, B.L., and Heistad, D.D. (1997) Altered vascular function after adenovirus-mediated overexpression of endothelial nitric oxide synthase. Am. J. Physiol. 273, H265–270.PubMedGoogle Scholar
  41. 41.
    Davidson, B.L., Allen, E.D., Kozarsky, K.F., Wilson, J.M., and Roessler, B.J. (1993) A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat. Genet. 3, 219–223.CrossRefPubMedGoogle Scholar
  42. 42.
    Hyman, A.L., Hao, Q., Tower, A., Kadowitz, P.J., Champion, H.C., Gumusel, B., and Lippton, H. (1998) Novel catheterization technique for the in vivo measurement of pulmonary vascular responses in rats. Am. J. Physiol. 274, H1218–H1229.PubMedGoogle Scholar
  43. 43.
    Baber, S.R., Champion, H.C., Bivalacqua, T.J., Hyman, A.L., and Kadowitz, P.J. (2003) Role of cyclooxygenase-2 in the generation of vasoactive prostanoids in the rat pulmonary and systemic vascular beds. Circulation 108, 896–901.CrossRefPubMedGoogle Scholar
  44. 44.
    Shizuru, J.A., Negrin, R.S., and Weissman, I.L. (2005) Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu. Rev. Med. 56, 509–538.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • W. Deng
    • 1
  • T.J. Bivalacqua
    • 1
    • 2
  • H.C. Champion
    • 3
  • W.J. Hellstrom
    • 4
  • Subramanyam N. Murthy
    • 5
  • Philip J. Kadowitz
    • 1
  1. 1.Departments of PharmacologyTulane University Health Sciences CenterNew OrleansUSA
  2. 2.Department of UrologyJohns Hopkins HospitalBaltimoreUSA
  3. 3.Department of Medicine UniversityPittsburgUSA
  4. 4.Department of UrologyTulane University Health Sciences CenterNew OrleansUSA
  5. 5.Departments of Medicine and PharmacologyTulane University School of MedicineNew OrleansUSA

Personalised recommendations