Assessing the Reductive Capacity of Cells by Measuring the Recycling of Ascorbic and Lipoic Acids

  • James M. May
Part of the Methods in Molecular Biology book series (MIMB, volume 610)


Most mammalian cells cannot synthesize vitamin C, or ascorbic acid, and thus must have efficient mechanisms for its intracellular recycling. Ascorbate can be recycled from both its oxidized forms using electrons from several intracellular reducing co-factors, including GSH and the reduced pyridine nucleotides. Methods have been developed to assess the ability of intact cells to recycle ascorbate, which include assay of extracellular ferricyanide reduction and measurement of the ability of the cells to reduce dehydroascorbic acid to ascorbate. Lipoic acid, a disulfide containing medium chain fatty acid, is also taken up by cells and reduced to dihydrolipoic acid, which can be measured upon efflux from the cells using Ellman’s reagent. Together, these assays provide an estimate of the ability of different cell types to recycle ascorbate and to generate intracellular reducing equivalents required to maintain the redox status of the cells.

Key words

Ascorbic acid lipoic acid ferricyanide Ellman’s reagent intracellular redox environment oxidant stress 



This work was supported by RO1 DK050435.


  1. 1.
    Frei, B., England, L., and Ames, B.N. (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA 86, 6377–6381.CrossRefPubMedGoogle Scholar
  2. 2.
    Mendiratta, S., Qu, Z.-C., and May, J.M. (1998) Erythrocyte ascorbate recycling: Antioxidant effects in blood. Free Radic. Biol. Med. 24, 789–797.CrossRefPubMedGoogle Scholar
  3. 3.
    Chatterjee, I.B., Majumder, A.K., Nandi, B.K., and Subramanian, N. (1975) Synthesis and some major functions of vitamin C in animals. Ann. N. Acad. Sci. 258, 24–47.CrossRefGoogle Scholar
  4. 4.
    Njus, D. and Kelley, P.M. (1991) Vitamins C and E donate single hydrogen atoms in vivo. FEBS Lett. 284, 147–151.CrossRefPubMedGoogle Scholar
  5. 5.
    Bielski, B.H., Richter, H.W., and Chan, P.C. (1975) Some properties of the ascorbate free radical. Ann. NY Acad. Sci. 258, 231–237.CrossRefPubMedGoogle Scholar
  6. 6.
    Bielski, B.H., Allen, A.O., and Schwarz, H.A. (1981) Mechanism of disproportionation of ascorbate radicals. J. Am. Chem. Soc. 103, 3516–3518.CrossRefGoogle Scholar
  7. 7.
    Iyanagi, T. and Yamazaki, I. (1969) One-electron-transfer reactions in biochemical systems. 3. One- electron reduction of quinones by microsomal flavin enzymes. Biochim. Biophys. Acta 172, 370–381.CrossRefPubMedGoogle Scholar
  8. 8.
    Lumper, L., Schneider, W., and Staudinger, H. (1967) Untersuchungen zur Kinetik der mikrosomalen NADH: semidehydroascorbat-oxydoreduktase. Hoppe Seylers. Z. Physiol. Chem. 348, 323–328.PubMedGoogle Scholar
  9. 9.
    Schulze, H.-U., Gallenkamp, H., and Staudinger, H. (1970) Untersuchungen zum mikrosomalen NADH-abhängigen elektronentransport. Hoppe Seylers. Z. Physiol. Chem. 351, 809–817.PubMedGoogle Scholar
  10. 10.
    May, J.M., Cobb, C.E., Mendiratta, S., Hill, K.E., and Burk, R.F. (1998) Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J. Biol. Chem. 273, 23039–23045.CrossRefPubMedGoogle Scholar
  11. 11.
    Winkler, B.S., Orselli, S.M., and Rex, T.S. (1994) The redox couple between glutathione and ascorbic acid: A chemical and physiological perspective. Free Radic. Biol. Med. 17, 333–349.CrossRefPubMedGoogle Scholar
  12. 12.
    Wells, W.W., Xu, D.P., Yang, Y.F., and Rocque, P.A. (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J. Biol. Chem. 265, 15361–15364.PubMedGoogle Scholar
  13. 13.
    Park, J.B. and Levine, M. (1996) Purification, cloning and expression of dehydroascorbic acid- reducing activity from human neutrophils: Identification as glutaredoxin. Biochem. J. 315, 931–938.PubMedGoogle Scholar
  14. 14.
    Del Bello, B., Maellaro, E., Sugherini, L., Santucci, A., Comporti, M., and Casini, A.F. (1994) Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3a-hydroxysteroid dehydrogenase. Biochem. J. 304, 385–390.PubMedGoogle Scholar
  15. 15.
    May, J.M., Mendiratta, S., Hill, K.E., and Burk, R.F. (1997) Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J. Biol. Chem. 272, 22607–22610.CrossRefPubMedGoogle Scholar
  16. 16.
    Guaiquil, V.H., Farber, C.M., Golde, D.W., and Vera, J.C. (1997) Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione. J. Biol. Chem. 272, 9915–9921.CrossRefPubMedGoogle Scholar
  17. 17.
    Savini, I., Duflot, S., and Avigliano, L. (2000) Dehydroascorbic acid uptake in a human keratinocyte cell line (HaCaT) is glutathione-independent. Biochem. J. 345, 665–672.CrossRefPubMedGoogle Scholar
  18. 18.
    Orringer, E.P. and Roer, M.E. (1979) An ascorbate-mediated transmembrane-reducing system of the human erythrocyte. J. Clin. Invest. 63, 53–58.CrossRefPubMedGoogle Scholar
  19. 19.
    Székely, M., Mányai, S., and Straub, F.B. (1952) Über den Mechanismus der osmotischen Hämolyse. Acta Physiol. Acad. Sci. Hung. 3, 571–583.Google Scholar
  20. 20.
    Goldenberg, H., Grebing, C., and Löw, H. (1983) NADH-monodehydroascorbate reductase in human erythrocyte membranes. Biochem. Int. 6, 1–9.PubMedGoogle Scholar
  21. 21.
    May, J.M., Qu, Z.-C., and Whitesell, R.R. (1995) Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes. Biochemistry 34, 12721–12728.CrossRefPubMedGoogle Scholar
  22. 22.
    May, J.M. and Asard, H. (2004) Ascorbate Recycling. In: Vitamin C. Functions and biochemistry in animals and plants (H. Asard, May, J.M., and Smirnoff, N., Eds.), Bios Scientific Publishers, London, UK, pp.139–158.Google Scholar
  23. 23.
    May, J.M., Qu, Z.C., and Cobb, C.E. (2001) Recycling of the ascorbate free radical by human erythrocyte membranes. Free Radic. Biol. Med. 31, 117–124.CrossRefPubMedGoogle Scholar
  24. 24.
    van Duijn, M.M., Tijssen, K., van Steveninck, J., van den Broek, P.J.A., and van der Zee, J. (2000) Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. J. Biol. Chem. 275, 27720–27725.Google Scholar
  25. 25.
    May, J.M., Qu, Z.C., Whitesell, R.R., and Cobb, C.E. (1996) Ascorbate recycling in human erythrocytes: Role of GSH in reducing dehydroascorbate. Free Radic. Biol. Med. 20, 543–551.CrossRefPubMedGoogle Scholar
  26. 26.
    Giblin, F.J., Winkler, B.S., Sasaki, H., Chakrapani, B., and Leverenz, V. (1993) Reduction of dehydroascorbic acid in lens epithelium by the glutathione redox cycle. Invest. Ophthalmol. Vis. Sci. 34, 1298.Google Scholar
  27. 27.
    May, J.M., Qu, Z.C., and Li, X. (2001) Requirement for GSH in recycling of ascorbic acid in endothelial cells. Biochem. Pharmacol. 62, 873–881.CrossRefPubMedGoogle Scholar
  28. 28.
    Grebing, C., Crane, F.L., Löw, H., and Hall, K. (1984) A transmembranous NADH-dehydrogenase in human erythrocyte membranes. J. Bioenerg. Biomembr. 16, 517–533.CrossRefPubMedGoogle Scholar
  29. 29.
    Himmelreich, U. and Kuchel, P.W. (1997) 13C-NMR studies of transmembrane electron transfer to extracellular ferricyanide in human erythrocytes. Eur. J. Biochem. 246, 638–645.CrossRefPubMedGoogle Scholar
  30. 30.
    Iyanagi, T., Yamazaki, I., and Anan, K.F. (1985) One-electron oxidation-reduction properties of ascorbic acid. Biochim. Biophys. Acta 806, 255–261.CrossRefGoogle Scholar
  31. 31.
    May, J.M. (1999) Is ascorbic acid an antioxidant for the plasma membrane? FASEB J. 13, 995–1006.PubMedGoogle Scholar
  32. 32.
    Avron, M. and Shavit, N. (1963) A sensitive and simple method for determination of ferrocyanide. Anal. Biochem. 6, 549–554.CrossRefPubMedGoogle Scholar
  33. 33.
    Vera, J.C., Rivas, C.I., Fischbarg, J., and Golde, D.W. (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364, 79–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Schweinzer, E., Mao, Y., Krajnik, P., Getoff, N., and Goldenberg, H. (1996) Reduction of extracellular dehydroascorbic acid by K562 cells. Cell Biochem. Funct. 14, 27–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Tolbert, B.M. and Ward, J.B. (1982) Dehydroascorbic acid. In: Ascorbic Acid: Chemistry, Metabolism, and Uses (P.A.Seib and Tolbert, B.M., Eds.), American Chemical Society, Washington, DC, pp. 101–123.CrossRefGoogle Scholar
  36. 36.
    Levine, M., Wang, Y.H., and Rumsey, S.C. (1999) Analysis of ascorbic acid and dehydroascorbic acid in biological samples. Methods Enzymol. 299, 65–76.CrossRefPubMedGoogle Scholar
  37. 37.
    Prasad, P.D., Wang, H., Kekuda, R., Fujita, T., Fei, Y.J., Devoe, L.D., Leibach, F.H., and Ganapathy, V. (1998) Cloning and functional expression of a cDNA encoding a mammalian sodium- dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J. Biol. Chem. 273, 7501–7506.CrossRefPubMedGoogle Scholar
  38. 38.
    Adkison, K.D. and Shen, D.D. (1996) Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J. Pharmacol. Exp. Ther. 276, 1189–1200.PubMedGoogle Scholar
  39. 39.
    Jocelyn, P.C. (1967) The standard redox potential of cysteine-cystine from the thiol-disulfide exchange reaction with glutathione and lipoic acid. Eur. J. Biochem. 2, 327–331.CrossRefPubMedGoogle Scholar
  40. 40.
    Pick, U., Haramaki, N., Constantinescu, A., Handelman, G.J., Tritschler, H.J., and Packer, L. (1995) Glutathione reductase and lipoamide dehydrogenase have opposite stereospecificities for a-lipoic acid enantiomers. Biochem. Biophys. Res. Commun. 206, 724–730.CrossRefPubMedGoogle Scholar
  41. 41.
    Arnér, E.S.J., Nordberg, J., and Holmgren, A. (1996) Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem. Biophys. Res. Commun. 225, 268–274.CrossRefPubMedGoogle Scholar
  42. 42.
    Constantinescu, A., Pick, U., Handelman, G.J., Haramaki, N., Han, D., Podda, M., Tritschler, H.J., and Packer, L. (1995) Reduction and transport of lipoic acid by human erythrocytes. Biochem. Pharmacol. 50, 253–261.CrossRefPubMedGoogle Scholar
  43. 43.
    Jones, W., Li, X., Perriott, L.M., Whitesell, R.R., and May, J.M. (2002) Uptake, recycling, and antioxidant functions of a-lipoic acid in endothelial cells. Free Radic. Biol. Med. 33, 83–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Biaglow, J.E., Donahue, J., Tuttle, S., Held, K., Chrestensen, C., and Mieyal, J. (2000) A method for measuring disulfide reduction by cultured mammalian cells: relative contributions of glutathione-dependent and glutathione-independent mechanisms. Anal. Biochem. 281, 77–86.CrossRefPubMedGoogle Scholar
  45. 45.
    May, J.M., Qu, Z.C., and Nelson, D.J. (2006) Cellular disulfide-reducing capacity: an integrated measure of cell redox capacity. Biochem. Biophys. Res. Commun. 344, 1352–1359.CrossRefPubMedGoogle Scholar
  46. 46.
    Hissin, P.J. and Hilf, R. (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74, 214–226.CrossRefPubMedGoogle Scholar
  47. 47.
    Pachla, L.A. and Kissinger, P.T. (1976) Determination of ascorbic acid in foodstuffs, pharmaceuticals, and body fluids by liquid chromatography with electrochemical detection. Anal. Chem. 48, 364–367.CrossRefPubMedGoogle Scholar
  48. 48.
    Washko, P.W., Welch, R.W., Dhariwal, K.R., Wang, Y., and Levine, M. (1992) Ascorbic acid and dehydroascorbic acid analyses in biological samples. Anal. Biochem. 204, 1–14.CrossRefPubMedGoogle Scholar
  49. 49.
    Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77.CrossRefPubMedGoogle Scholar
  50. 50.
    May, J.M., Qiu, Z., and Whitesell, R.R. (2003) Generation of oxidant stress in cultured endothelial cells by methylene blue: protective effects of glucose and ascorbic acid. Biochem. Pharmacol. 66, 777–784.CrossRefPubMedGoogle Scholar
  51. 51.
    Farber, C.M., Kanengiser, S., Stahl, R., Liebes, L., and Silber, R. (1983) A specific high-performance liquid chromatography assay for dehydroascorbic acid show an increased content in CLL lymphocytes. Anal. Biochem. 134, 355–360.CrossRefPubMedGoogle Scholar
  52. 52.
    Bergsten, P., Amitai, G., Kehrl, J., Dhariwal, K.R., Klein, H.G., and Levine, M. (1990) Millimolar concentrations of ascorbic acid in purified human mononuclear leukocytes. Depletion and reaccumulation. J. Biol. Chem. 265, 2584–2587.PubMedGoogle Scholar
  53. 53.
    Iheanacho, E.N., Stocker, R., and Hunt, N.H. (1993) Redox metabolism of vitamin C in blood of normal and malaria-infected mice. Biochim. Biophys. Acta 1182, 15–21.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • James M. May
    • 1
  1. 1.Departments of Medicine and Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations