Cre Transgenic Mouse Lines

  • Xin Wang
Part of the Methods in Molecular Biology book series (MIMB, volume 561)


With the development of the Cre-LoxP system, conditional gene targeting has rapidly become a powerful technology that facilitates the study of gene function. This advanced technique circumvents three major concerns sometimes levelled against conventional transgenic and gene-targeting approaches. First of all, gene ablation may exert its effect in multiple cell and tissue types, creating a complex phenotype in which it is difficult to distinguish direct function in a particular tissue from secondary effects resulting from altered gene function in other tissues. Secondly, a gene deletion expressed in the germ line may cause embryonic lethality, thereby precluding analysis of gene function in the adult tissues. Thirdly, the transgenic approach represents a somewhat surreal over-expression of a given protein often causing spurious phenotypes. The generation of conditional knockout mice is a multiple-step process, which involves mating the flox mutant mouse line (essential exon/s of the gene of interest are flanked by two LoxP sites) and the Cre-expressing mouse line. Over the past few years many inducible and/or tissue-specific Cre mouse lines have been developed. This chapter will give a brief review of the generation of Cre-expressing mouse lines and will discuss the strategy of using these Cre lines. In addition, information regarding established Cre-expressing mouse lines will be provided.

Key words

Mouse Cre recombinase Transgenesis 


  1. 1.
    Kühn, R., Schwenk, F., Aguet, M., and Rajewsky, K. (1995). Inducible gene targeting in mice. Science, 269, 1427–1428PubMedCrossRefGoogle Scholar
  2. 2.
    Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. (1996). Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. U.S.A., 93, 10887–10890PubMedCrossRefGoogle Scholar
  3. 3.
    Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet., 21, 70–71PubMedCrossRefGoogle Scholar
  4. 4.
    Guy, J., Hendrich, B., Holmes, M., Martin, J.E., and Bird, A. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet., 27(3), 322–326PubMedCrossRefGoogle Scholar
  5. 5.
    Imayoshi, I., Ohtsuka, T., Metzger, D., Chambon, P., and Kegeyama, R. (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44(5), 233–238PubMedCrossRefGoogle Scholar
  6. 6.
    Casanova, E., Fehsenfeld, S., Mantamadiotis, T., Lemberger, T., Greiner, E., Stewart, A.F., and Schütz, G. (2001). A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis, 31(1), 37–42PubMedCrossRefGoogle Scholar
  7. 7.
    Casanova, E., Fehsenfeld, S., Lemberger, T., Shimshek, D.R., Sprengel, R., and Mantamadiotis, T. (2002). ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis, 34(3), 208–214PubMedCrossRefGoogle Scholar
  8. 8.
    Fraser, M.M., Zhu, X., Kwon, C.H., Uhlmann, E.J., Gutmann, D.H., and Baker, S.J.(2004). Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res., 64(21), 7773–7779PubMedCrossRefGoogle Scholar
  9. 9.
    Barski, J.J., Dethleffsen, K., and Meyer, M. (2000). Cre recombinase expression in cerebellar Purkinje cells. Genesis, 28(3-4), 93–98PubMedCrossRefGoogle Scholar
  10. 10.
    Agah, R., Frenkel, P.A., French, B.A., Michael, L.H., Overbeek, P.A., and Schneider, M.D. (1997). Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest., 100(1), 169–179PubMedCrossRefGoogle Scholar
  11. 11.
    Sohal, D.S., Nghiem, M., Crackower, M.A., Witt, S.A., Kimball, T.R., Tymitz, K.M., Penninger, J.M., and Molkentin, J.D. (2001). Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res, 89, 20–25PubMedCrossRefGoogle Scholar
  12. 12.
    Chen, J., Kubalak, S.W., Minamisawa, S., Price, R.L., Becker, K.D., Hickey, R., Ross, J. Jr., and Chien, K.R. (1998). Selective requirement of myosin light chain 2v in embryonic heart function. J. Biol. Chem., 273(2), 1252–1256PubMedCrossRefGoogle Scholar
  13. 13.
    Gerald, W.M.B., Haspel, J.A., Smith, X.C.L., Wiener, H.H., and Burden, S.J. (2000). Selective expression of Cre recombinase in skeletal muscle fibers. Genesis, 26, 165–166CrossRefGoogle Scholar
  14. 14.
    Xin, H.B., Deng, K.Y., Rishniw, M., Ji, G., and Kotlikoff, M.I. (2002). Smooth muscle expression of Cre recombinase and eGFP in transgenic mice. Physiol. Genomics, 10(3), 211–215PubMedGoogle Scholar
  15. 15.
    Kellendonk, C., Opherk, C., Anlag, K., Schütz, G., and Tronche, F. (2000). Hepatocyte-specific expression of Cre recombinase. Genesis, 26(2), 151–153PubMedCrossRefGoogle Scholar
  16. 16.
    Gannon, M., Shiota, C., Postic, C., Wright, C.V.E., and Magnuson, M. (2000). Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis, 26, 139–141PubMedCrossRefGoogle Scholar
  17. 17.
    Maddison, L.A., Nahm, H., DeMayo, F., and Greenberg, N.M. (2000). Prostate specific expression of Cre recombinase in transgenic mice. Genesis, 26, 154–156PubMedCrossRefGoogle Scholar
  18. 18.
    Leheste, J.R., Melsen, F., Wellner, M., Jansen, P., Schlichting, U., Renner-Müller, I., Andreassen, T.T., Wolf, E., Bachmann, S., nykjaer, A., and Willnow, T.E. (2003). Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J., 17(2), 247–249PubMedGoogle Scholar
  19. 19.
    Marquardt, T., Ashery-Padan, R., Andrejewski, N., Scardigli, R., Guillemot, F., and Gruss, P. (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell, 105, 43–55PubMedCrossRefGoogle Scholar
  20. 20.
    Gustafsson , E., Brakebusch, C., Hietanen, K., and Fassler, R. (2001). Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice. J. Cell Sci., 114, 671–676PubMedGoogle Scholar
  21. 21.
    Kisanuki, Y.Y., Hammer, R.E., Miyazaki, J., Williams, S.C., Richardson, J.A., and Yanagisawa, M. (2001). Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol., 230(2), 230–242PubMedCrossRefGoogle Scholar
  22. 22.
    Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. (1994). Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, 265(5168), 103–106PubMedCrossRefGoogle Scholar
  23. 23.
    Takeda, K., Clausen, B.E., Kaisho, T., Tsujimura, T., Terada, N., Förster, I., and Akira, S. (1999). Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity, 10(1), 39–49PubMedCrossRefGoogle Scholar
  24. 24.
    Sano, S., Itami, S., Takeda, K., Tarutani, M., Yamaguchi, Y., Miura, H., Yoshikawa, K., Akira, S., and Takeda, J. (1999). Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J., 18(17), 4657–4668PubMedCrossRefGoogle Scholar
  25. 25.
    Vasioukhin, V., Degenstein, L., Wise, B., and Fuchs, E. (1999). The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. U.S.A., 96(15), 8551–8556PubMedCrossRefGoogle Scholar
  26. 26.
    Wagner, K.U., Wall, R.J., St-Onge, L., Gruss, P., Wynshaw-Boris, A., Garrett, L., Li, M., Furth, P.A., and Hennighausen, L. (1997). Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res., 25(21), 4323–4330PubMedCrossRefGoogle Scholar
  27. 27.
    Ovchinnikov, D.A., Deng, J.M., Ogunrinu, G., and Behringer, R.R. (2000). Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis, 26, 145–146PubMedCrossRefGoogle Scholar
  28. 28.
    Castro, C.H., Stains, J.P., Sheikh, S.,Szejnfeld, V.L., Willecke, K., Theis, M., and Civitelli, R. (2003). Development of mice with osteoblast-specific connexin43 gene deletion. Cell Commun. Adhes., 10(4-6), 445–450PubMedCrossRefGoogle Scholar
  29. 29.
    Barlow, C., Schroeder, M., Lekstrom-Himes, J., Kylefjord, H., Deng, C.X., Wynshaw-Boris, A., Spiegelman, B.M., and Xanthopoulos, K.G. (1997). Targeted expression of Cre recombinase to adipose tissue of transgenic mice directs adipose-specific excision of loxP-flanked gene segments. Nucleic Acids Res., 25(12), 2543–2545PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of Life Sciences, University of ManchesterCore Technology FacilityManchesterUK

Personalised recommendations