Skip to main content

Defining the Thermodynamics of Protein/DNA Complexes and Their Components Using Micro-calorimetry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

Understanding the forces driving formation of protein/DNA complexes requires measurement of the Gibbs energy of association, ΔG, and its component enthalpic, ΔH, and entropic, ΔS, contributions. Isothermal titration calorimetry provides the enthalpy (heat) of the binding reaction and an estimate of the association constant, if not too high. Repeating the ITC experiment at several temperatures yields ΔC p , the change in heat capacity, an important quantity permitting extrapolation of enthalpies and entropies to temperatures outside the experimental range. Binding constants, i.e. Gibbs energies, are best obtained by optical methods such as fluorescence at temperatures where the components are maximally folded. Since DNA-binding domains are often partially unfolded at physiological temperatures, the ITC-observed enthalpy of binding may need to be corrected for the negative contribution from protein refolding. This correction is obtained by differential scanning calorimetric melting of the free DNA-binding domain. Corrected enthalpies are finally combined with accurate Gibbs energies to yield the entropy factor (TΔS) at various temperatures. Gibbs energies can be separated into electrostatic and non-electrostatic contributions from the ionic strength dependence of the binding constant.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Patikoglou, G. and Burley, S.K. (1997) Eukaryotic transcription factor–DNA complexes. Ann. Rev. Biophys. Biomol. Struct. 26, 289–325.

    Article  CAS  Google Scholar 

  2. Schultz, S.C., Shields, G.C. and Steitz, T.A. (1991) Crystal structure of a CAP–DNA complex: the DNA is bent by 90°. Science 253, 1001–1007.

    Article  PubMed  CAS  Google Scholar 

  3. Kim, J.L., Nikolov, D.B. and Burley, S.K. (1993) Co-crystal structure of TBP recognising the minor groove of a TATA element. Nature 365, 520–527.

    Article  PubMed  CAS  Google Scholar 

  4. Werner, M.H., Huth, J.R., Gronenborn, A.M. and Clore, G.M. (1995) Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY–DNA complex. Cell 81, 705–714.

    Article  PubMed  CAS  Google Scholar 

  5. Love, J.J., Li, X., Case, D.A., Giese, K., Grosschedl, R. and Wright, P.E. (1995) Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795.

    Article  PubMed  CAS  Google Scholar 

  6. Murphy, F.V., Sweet, R.M. and Churchill, M.E.A. (1999) The structure of a chromosomal high mobility group protein–DNA complex reveals sequence neutral mechanisms important for non-sequence specific DNA recognition. EMBO J. 18, 6610–6618.

    Article  PubMed  CAS  Google Scholar 

  7. Dragan, A.I., Klass, J., Read, C., Churchill, M.E., Crane-Robinson, C. and Privalov, P.L. (2003) DNA binding of a non-sequence-specific HMG-D protein is entropy driven with a substantial non-electrostatic contribution. J. Mol. Biol. 331, 795–813.

    Article  PubMed  CAS  Google Scholar 

  8. Dragan, A.I., Read, C.M., Makeyeva, E.N., Milgotina, E.I., Churchill, M.E., Crane-Robinson, C. and Privalov, P.L. (2004) DNA binding and bending by HMG boxes: energetic determinants of specificity. J. Mol. Biol. 343, 371–393.

    Article  PubMed  CAS  Google Scholar 

  9. Murphy, K.P. and Freire, E. (1992) Thermodynamics of structural stability and co-operative folding behaviour in proteins. Adv. Protein Chem. 43, 313–361.

    Article  PubMed  CAS  Google Scholar 

  10. Spolar, R.S., Livingstone, J.R. and Record, M.T. Jr. (1992) Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry 31, 3947–3955.

    Article  PubMed  CAS  Google Scholar 

  11. Manning, G.S. (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246.

    Article  PubMed  CAS  Google Scholar 

  12. Ha, J.H., Capp, M.W., Hohenwalter, M.D., Baskerville, M. and Record, M.T. Jr. (1992) Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA. Possible thermodynamic origins of the “glutamate effect” on protein–DNA interactions. J. Mol. Biol. 228, 252–264.

    Article  PubMed  CAS  Google Scholar 

  13. Olmsted, M.C., Bond, J.P., Anderson, C.F. and Record, M.T. Jr. (1995) Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers. Biophys. J. 68, 634–647.

    Article  PubMed  CAS  Google Scholar 

  14. Manning, G.S. (2003) Is a small number of charge neutralizations sufficient to bend nucleosome core DNA onto its superhelical ramp. J. Am. Chem. Soc. 125, 15087–15092.

    Article  PubMed  CAS  Google Scholar 

  15. Privalov, P.L. and Makhatadze, G.I. (1990) Heat capacity of proteins II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J. Mol. Biol. 213, 385–391.

    Article  PubMed  CAS  Google Scholar 

  16. Makhatadze, G.I. and Privalov, P.L. (1995) Energetics of protein structure. Adv. Protein Chem. 47, 307–425.

    Article  PubMed  CAS  Google Scholar 

  17. Privalov, G., Kavina, V., Freire, E. and Privalov, P.L. (1995) Precise scanning calorimeter for studying thermal properties of biological macromolecules in dilute solution. Anal. Biochem. 232, 79–85.

    Article  PubMed  CAS  Google Scholar 

  18. Privalov, G.P. and Privalov, P.L. (2000) Problems and prospects in the microcalorimetry of biological macromolecules. Methods Enzymol. 323, 31–62.

    Article  PubMed  CAS  Google Scholar 

  19. Privalov, P.L. and Dragan, A.I. (2007) Microcalorimetry of biological macromolecules. Biophys. Chem. 126, 16–24.

    Article  PubMed  CAS  Google Scholar 

  20. McKinnon, I.R., Fall, L., Parody-Morreale, A. and Gill, S.J. (1984) A twin titration microcalorimeter for the study of biochemical reactions. Anal. Biochem. 139, 134–139.

    Article  PubMed  CAS  Google Scholar 

  21. Wiseman, T., Williston, S., Brandts, J.F. and Lin, L.N. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–37.

    Article  PubMed  CAS  Google Scholar 

  22. Freire, E., Mayorga, O.L., and Straume, M. (1990) Isothermal titration. Anal. Chem. 62, 950–959.

    Article  Google Scholar 

  23. Breslauer, K.J., Freire, E. and Straume, M. (1992) Calorimetry: a tool for DNA and ligand–DNA studies. Methods Enzymol. 211, 533–567.

    Article  PubMed  CAS  Google Scholar 

  24. Love, J.J., Li, X., Chung, J., Dyson, H.J. and Wright, P.E. (2004) The LEF-1 high-mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA. Biochemistry 43, 8725–8734.

    Article  PubMed  CAS  Google Scholar 

  25. Briggner, L.E. and Wadso, I. (1991) Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. J. Biochem. Biophys. Methods 22, 101–118.

    Article  PubMed  CAS  Google Scholar 

  26. Dragan, A.I., Li, Z., Makeyeva, E.N., Milgotina, E.I., Liu, Y., Crane-Robinson, C. and Privalov, P.L. (2006) Forces driving the binding of homeodomains to DNA. Biochemistry 45, 141–151.

    Article  PubMed  CAS  Google Scholar 

  27. Wallace, R.B. and Miyada, C.G. (1987) Oligonucleotide probes for the screening of recombinant DNA libraries. Methods Enzymol. 152, 432–442.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Peter Privalov (Johns Hopkins University, Baltimore), in whose laboratory the calorimetry was performed. Financial support from an NIH grant to the Baltimore laboratory (GM48036-06) and a Wellcome Trust grant to the Portsmouth laboratory are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Read .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Crane-Robinson, C., Dragan, A.I., Read, C.M. (2009). Defining the Thermodynamics of Protein/DNA Complexes and Their Components Using Micro-calorimetry. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_37

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics