Skip to main content

High Throughput Substrate Phage Display for Protease Profiling

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 539))

Summary

The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Barrett AJ, Rawlings, Neil D., Woessner, J. Fred. (2004) Handbook of Proteolytic Enzymes. San Diego: Elsevier Academic Press.

    Google Scholar 

  2. 2. Berger A, Schechter I. (1970) Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci, 257(813), 249–64.

    CAS  Google Scholar 

  3. 3. Diamond SL. (2007) Methods for mapping protease specificity. Curr Opin Chem Biol 11(1), 46–51.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Smith GP. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705), 1315–7.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Matthews DJ, Wells JA. (1993) Substrate phage: selection of protease substrates by monovalent phage display. Science 260(5111), 1113–7.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Ohkubo S, Miyadera K, Sugimoto Y, Matsuo K, Wierzba K, Yamada Y. (1999) Identification of substrate sequences for membrane type-1 matrix metalloproteinase using bacteriophage peptide display library. Biochem Biophys Res Commun 266(2), 308–13.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Cloutier SM, Chagas JR, Mach JP, Gygi CM, Leisinger HJ, Deperthes D. (2002) Substrate specificity of human kallikrein 2 (hK2) as determined by phage display technology. Eur J Biochem 269(11), 2747–54.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Smith MM, Shi L, Navre M. (1995) Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries. J Biol Chem 270(12), 6440–9.

    PubMed  CAS  Google Scholar 

  9. 9. Hills R, Mazzarella R, Fok K, et al. (2007) Identification of an ADAMTS-4 cleavage motif using phage display leads to the development of fluorogenic peptide substrates and reveals matrilin-3 as a novel substrate. J Biol Chem 282(15), 11101–9.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Pan W, Arnone M, Kendall M, et al. (2003) Identification of peptide substrates for human MMP-11 (stromelysin-3) using phage display. J Biol Chem 278(30), 27820–7.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Deng SJ, Bickett DM, Mitchell JL, et al. (2000) Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J Biol Chem 275(40), 31422–7.

    Article  PubMed  Google Scholar 

  12. 12. Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW. (2001) Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem 276(23), 20572–8.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Bieth JG. (1995) Theoretical and practical aspects of proteinase inhibition kinetics. Methods Enzymol 248, 59–84.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Schneider TD, Stephens RM. (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20), 6097–100.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Crooks GE, Hon G, Chandonia JM, Brenner SE. (2004) WebLogo: a sequence logo generator. Genome Res 14(6), 1188–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ratnikov, B., Cieplak, P., Smith, J. (2009). High Throughput Substrate Phage Display for Protease Profiling. In: Bugge, T., Antalis, T. (eds) Proteases and Cancer. Methods in Molecular Biology™, vol 539. Humana Press. https://doi.org/10.1007/978-1-60327-003-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-003-8_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-002-1

  • Online ISBN: 978-1-60327-003-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics