Advertisement

On-Demand Cleavable Linkers for Radioimmunotherapy

  • Pappanaicken R. Kumaresan
  • Juntao Luo
  • Kit S. Lam
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 539)

Summary

Radioimmunotherapy (RIT) using radiolabeled antibodies or its fragments holds great promise for cancer therapy. However, its clinical potential is often limited by the undesirable radiation exposure to normal organs such as liver, kidney, and bone marrow. It is important to develop new strategies in RIT that enable protection of vital organs from radiation exposure while maintaining therapeutic radiation dose to the cancer. One way to achieve this is to clear radiometal rapidly from the circulation after accumulation of radioimmunoconjugates (RIC) in the tumor. Our strategy is to place a highly efficient and specific cleavable linker between radiometal chelate and the tumor targeting agent. Such linker must be resistant to cleavage by enzymes present in the plasma and tumor. After radiotargeting agents have accumulated in the tumor, a cleaving agent (protease) can be administered to the patient “on demand” to cleave the specific linker, resulting in the release of radiometal from the circulating RIC, in a form that can be cleared rapidly by the kidneys. TNKase®, a serine protease tissue plasminogen activator and thrombolytic agent, which has been approved for clinical use in patient with acute myocardial infarction, was selected as an on-demand cleaving agent in our model. TNKase® specific on-demand cleavable (ODC) linkers were identified through screening random internally quenched fluorescent resonance energy transfer (FRET) “one-bead-one-compound” (OBOC) combinatorial peptide libraries. FRET-OBOC peptide libraries containing l-amino acid(s) in the center of the random linear peptide and d-amino acids flanking both sides of the l-amino acid(s) were used for screening. Peptide beads susceptible to TNKase® but resistant to plasma and tumor-associated protease cleavage were isolated for sequence analysis. The focus of this chapter is on the methods that have been used to identify and characterize ODC linkers and protease-specific substrates.

Keywords

Protease substrates On-demand cleavable linkers Radioimmunotherapy FRET-OBOC libraries Combinatorial chemistry 

Notes

Acknowledgments

The authors would like to thank Ekama Onofiok and Urvashi Bharadwaj for proofreading and funding support from NIH PO1CA047829-15A2.

References

  1. 1.
    DeNardo, G. L. (2005) Concepts in radioimmunotherapy and immunotherapy: Radioimmunotherapy from a Lym-1 perspective. Semin. Oncol. 32, S27–S35.PubMedCrossRefGoogle Scholar
  2. 2.
    Vriesendorp, H. M., Quadri, S. M., Andersson, B. S., and Dicke, K. A. (1996) Hematologic side effects of radiolabeled immunoglobulin therapy. Exp. Hematol. 24, 1183–90.PubMedGoogle Scholar
  3. 3.
    Bennett, J. M., Kaminski, M. S., Leonard, J. P., Vose, J. M., Zelenetz, A. D., Knox, S. J., Horning, S., Press, O. W., Radford, J. A., Kroll, S. M., and Capizzi, R. L. (2005) Assessment of treatment-related myelodysplastic syndromes and acute myeloid leukemia in patients with non-Hodgkin lymphoma treated with tositumomab and iodine I131 tositumomab. Blood 105, 4576–82.PubMedCrossRefGoogle Scholar
  4. Kumaresan, P. R., Natarajan, A., Song, A., Wang, X., Liu, R., DeNardo, G., DeNardo, S. J., and Lam, K. S. (2007) Development of Tissue Plasminogen Activator Specific “On Demand Cleavable” (ODC) Linkers for Radioimmunotherapy by Screening One-Bead-One-Compound Combinatorial Peptide Libraries. Bioconjugate chemistry ASAP Article 10.1021/bc0602681 S1043-1802(06)00268-0.Google Scholar
  5. 5.
    5.Beeson, C., Butrynski, J. E., Hart, M. J., Nourigat, C., Matthews, D. C., Press, O. W., Senter, P. D., and Bernstein, I. D. (2003) Conditionally cleavable radioimmunoconjugates: A novel approach for the release of radioisotopes from radioimmunoconjugates. Bioconjug. Chem. 14, 927–33.PubMedCrossRefGoogle Scholar
  6. 6.
    DeNardo, G. L., DeNardo, S. J., Peterson, J. J., Miers, L. A., Lam, K. S., Hartmann-Siantar, C., and Lamborn, K. R. (2003) Preclinical evaluation of cathepsin-degradable peptide linkers for radioimmunoconjugates. Clin. Cancer Res. 9, 3865S–3872S.PubMedGoogle Scholar
  7. 7.
    Kumaresan, P. R. and Lam, K. S. (2006) Screening chemical microarrays: Methods and applications. Mol. Biosyst. 2, 259–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Lam, K. S. (1998) Enzyme-linked colorimetric screening of a one-bead one-compound combinatorial library. Methods Mol. Biol. 87, 7–12.PubMedGoogle Scholar
  9. 9.
    Lam, K. S., Lehman, A. L., Song, A., Doan, N., Enstrom, A. M., Maxwell, J., and Liu, R. (2003) Synthesis and screening of “one-bead one-compound” combinatorial peptide libraries. Methods Enzymol. 369, 298–322.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu, R., Marik, J., and Lam, K. S. (2003) Design, synthesis, screening, and decoding of encoded one-bead one-compound peptidomimetic and small molecule combinatorial libraries. Methods Enzymol. 369, 271–87.PubMedCrossRefGoogle Scholar
  11. Chan, W. C. and White, P. D. In: Fmoc Solid Phase Peptide Synthesis, Chan, W. C. and White, P. D., eds. The Practical Approach Series; Oxford University Press, New York, pp 1–74.Google Scholar
  12. 12.
    King, D. S., Fields, C. G., and Fields, G. B. (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int. J. Pept. Protein Res. 36, 255–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Schmid, J. A. and Sitte, H. H. (2003) Fluorescence resonance energy transfer in the study of cancer pathways. Curr. Opin. Oncol. 15, 55–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Kohl, T., Heinze, K. G., Kuhlemann, R., Koltermann, A., and Schwille, P. (2002) A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc. Natl. Acad. Sci. USA 99, 12161–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Martin, S. F., Hattersley, N., Samuel, I. D., Hay, R. T., and Tatham, M. H. (2007) A fluorescence-resonance-energy-transfer-based protease activity assay and its use to monitor paralog-specific small ubiquitin-like modifier processing. Anal. Biochem. 363, 83–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Lam, K. S., Lebl, M., and Krchnak, V. (1997) The “one-bead-one-compound” combinatorial library method. Chem. Rev. 97, 411–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., and Knapp, R. J. (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Meldal, M., Svendsen, I., Breddam, K., and Auzanneau, F. I. (1994) Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity. Proc. Natl. Acad. Sci. USA 91, 3314–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Cannon, C. P., McCabe, C. H., Gibson, C. M., Ghali, M., Sequeira, R. F., McKendall, G. R., Breed, J., Modi, N. B., Fox, N. L., Tracy, R. P., Love, T. W., and Braunwald, E. (1997) TNK-tissue plasminogen activator in acute myocardial infarction. Results of the thrombolysis in myocardial infarction (TIMI) 10A dose-ranging trial. Circulation 95, 351–6.PubMedGoogle Scholar
  20. 20.
    Ding, L., Coombs, G. S., Strandberg, L., Navre, M., Corey, D. R., and Madison, E. L. (1995) Origins of the specificity of tissue-type plasminogen-activator. Proc. Natl. Acad. Sci. USA 92, 7627–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Guerra, D. R., Karha, J., and Gibson, C. M. (2003) Safety and efficacy of tenecteplase in acute myocardial infarction. Expert Opin. Pharmacother. 4, 791–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaiser, E., Colescott, R. L., Bossinger, C. D., and Cook, P. I. (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Vojkovsky, T. (1995) Detection of secondary amines on solid phase. Pept. Res. 8, 236–7.PubMedGoogle Scholar
  24. 24.
    Song, A. M., Wang, X. B., Zhang, J. H., Marik, J., Lebrilla, C. B., and Lam, K. S. (2004) Synthesis of hydrophilic and flexible linkers for peptide derivatization in solid phase. Bioorg. Med. Chem. Lett. 14, 161–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu, R. W. and Lam, K. S. (2001) Automatic Edman microsequencing of peptides containing multiple unnatural amino acids. Anal. Biochem. 295, 9–16.PubMedCrossRefGoogle Scholar
  26. 26.
    King, D. S., Fields, C. G., and Fields, G. B. (1990) A cleavage method which minimizes side reactions following Fmoc solid-phase peptide-synthesis. Int. J. Pept. Protein Res. 36, 255–66.PubMedCrossRefGoogle Scholar
  27. 27.
    Greg, H. T. (1995) Bioconjugate Techniques, Academic, San Diego.Google Scholar
  28. 28.
    Moses, J. E. and Moorhouse, A. D. (2007) The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Meldal, M. (2002) The one-bead two-compound assay for solid phase screening of combinatorial libraries. Biopolymers 66, 93–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Warnecke, A., Fichtner, I., Sass, G., and Kratz, F. (2007) Synthesis, cleavage profile, and antitumor efficacy of an albumin-binding prodrug of methotrexate that is cleaved by plasmin and cathepsin B. Arch. Pharm. 340, 389–95.CrossRefGoogle Scholar
  31. 31.
    Potrich, C., Tomazzolli, R., Dalla Serra, M., Anderluh, G., Malovrh, P., Macek, P., Menestrina, G., and Tejuca, M. (2005) Cytotoxic activity of a tumor protease-activated pore-forming toxin. Bioconjug. Chem. 16, 369–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Harada, M., Sakakibara, H., Yano, T., Suzuki, T., and Okuno, S. (2000) Determinants for the drug release from T-0128, camptothecin analogue-carboxymethyl dextran conjugate. J. Control Release 69, 399–412.PubMedCrossRefGoogle Scholar
  33. 33.
    Deguchi, J. O., Aikawa, M., Tung, C. H., Aikawa, E., Kim, D. E., Ntziachristos, V., Weissleder, R., and Libby, P. (2006) Inflammation in atherosclerosis: Visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114, 55–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Melancon, M. P., Wang, W., Wang, Y., Shao, R., Ji, X., Gelovani, J. G., and Li, C. (2007) A novel method for imaging in vivo degradation of poly(l-glutamic acid), a biodegradable drug carrier. Pharm. Res. 24, 1217–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Jiang, T., Olson, E. S., Nguyen, Q. T., Roy, M., Jennings, P. A., and Tsien, R. Y. (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA 101, 17867–72.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pappanaicken R. Kumaresan
    • 1
  • Juntao Luo
    • 1
  • Kit S. Lam
    • 1
  1. 1.Division of Hematology & OncologyUC Davis Cancer CenterSacramentoUSA

Personalised recommendations