Advertisement

Delineating Protease Functions During 
Cancer Development

  • Nesrine I. Affara
  • Pauline Andreu
  • Lisa M. CoussensEmail author
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 539)

Summary

Much progress has been made in understanding how matrix remodeling proteases, including metalloproteinases, serine proteases, and cysteine cathepsins, functionally contribute to cancer development. In addition to modulating extracellular matrix metabolism, proteases provide a significant protumor advantage to developing neoplasms through their ability to modulate bioavailability of growth and proangiogenic factors, regulation of bioactive chemokines and cytokines, and processing of cell–cell and cell–matrix adhesion molecules. Although some proteases directly regulate these events, it is now evident that some proteases indirectly contribute to cancer development by regulating posttranslational activation of latent zymogens that then directly impart regulatory information. Thus, many proteases act in a cascade-like manner and exert their functionality as part of a proteolytic pathway rather than simply functioning individually. Delineating the cascade of enzymatic activities contributing to overall proteolysis during carcinogenesis may identify rate-limiting steps or pathways that can be targeted with anti-cancer therapeutics. This chapter highlights recent insights into the complexity of roles played by pericellular and intracellular proteases by examining mechanistic studies as well as the roles of individual protease gene functions in various organ-specific mouse models of cancer development, with an emphasis on intersecting proteolytic activities that amplify programming of tissues to foster neoplastic development.

Key words

ADAMs Angiogenesis Cysteine cathepsins Cancer ECM remodeling Inflammation Metalloproteinases Mouse models Plasminogen activators Proteases Proteolytic cascades Serine proteases 

Notes

Acknowledgments

The authors acknowledge all the scientists who made contributions to the areas of research reviewed here that were not cited due to space constraints. The authors acknowledge support from the National Institutes of Health and a Department of Defense Era of Hope Scholar Award to LMC.

References

  1. 1.
    1. Bissell, M. J., Aggeler, J. (1987) Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res 249: 251–262.Google Scholar
  2. 2.
    2. Bissell, M. J., Radisky, D. (2001) Putting tumours in context. Nat Rev Cancer 1 (1): 46–54.CrossRefGoogle Scholar
  3. 3.
    3. van Kempen, L. C., de Visser, K. E., Coussens, L. M. (2006) Inflammation, proteases and cancer. Eur J Cancer 42 (6): 728–734.CrossRefGoogle Scholar
  4. 4.
    4. Blum, G., Mullins, S. R., Keren, K., et al (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1 (4): 203–209.CrossRefGoogle Scholar
  5. 5.
    5. Blum, G., von Degenfeld, G., Merchant, M. J., Blau, H. M., Bogyo, M. (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3 (10): 668–677.CrossRefGoogle Scholar
  6. 6.
    6. Salomon, A. R., Ficarro, S. B., Brill, L. M., et al (2003) Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc Natl Acad Sci USA 100 (2): 443–448.CrossRefGoogle Scholar
  7. 7.
    7.Sieber, S. A., Cravatt, B. F. (2006) Analytical platforms for activity-based protein profiling-exploiting the versatility of chemistry for functional proteomics. Chem Commun (Camb) (22): 2311–2319.Google Scholar
  8. 8.
    8. Sloane, B. F., Sameni, M., Podgorski, I., Cavallo-Medved, D., Moin, K. (2006) Functional imaging of tumor proteolysis. Annu Rev Pharmacol Toxicol 46: 301–315.CrossRefGoogle Scholar
  9. 9.
    9. Kato, D., Boatright, K. M., Berger, A. B., et al (2005) Activity-based probes that target diverse cysteine protease families. Nat Chem Biol 1 (1): 33–38.CrossRefGoogle Scholar
  10. 10.
    10. Lopez-Otin, C., Matrisian, L. M. (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7 (10): 800–808.CrossRefGoogle Scholar
  11. 11.
    11. Lopez-Otin, C., Overall, C. M. (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3 (7): 509–519.CrossRefGoogle Scholar
  12. 12.
    12. Hoffman, M. M., Monroe, D. M. (2005) Rethinking the coagulation cascade. Curr Hematol Rep 4 (5): 391–396.Google Scholar
  13. 13.
    13. Carroll, M. C. (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5 (10): 981–986.CrossRefGoogle Scholar
  14. 14.
    14. Egeblad, M., Werb, Z. (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174.CrossRefGoogle Scholar
  15. 15.
    15. Puente, X. S., Pendás, A. M., Llano, E., Velasco, G., López-Otín, C. (1996) Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res 56 (5): 944–949.Google Scholar
  16. 16.
    16. Rhee, J. S., Coussens, L. M. (2002) RECKing MMP function: implications for cancer development. Trends Cell Biol 12 (5): 209–211.CrossRefGoogle Scholar
  17. 17.
    17. Frank, B. T., Rossall, J. C., Caughey, G. H., Fang, K. C. (2001) Mast cell tissue inhibitor of metalloproteinase-1 is cleaved and inactivated extracellularly by alpha-chymase. J Immunol 166 (4): 2783–2792.Google Scholar
  18. 18.
    18. Coussens, L. M., Hanahan, D., Arbeit, J. M. (1996) Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am J Path 149 (6): 1899–1917.Google Scholar
  19. 19.
    19. Coussens, L. M., Tinkle, C. L., Hanahan, D., Werb, Z. (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103 (3): 481–490.CrossRefGoogle Scholar
  20. 20.
    20. Bergers, G., Brekken, R., McMahon, G., et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2 (10): 737–744.Google Scholar
  21. 21.
    21. Giraudo, E., Inoue, M., Hanahan, D. (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114 (5): 623–633.Google Scholar
  22. 22.
    22. Huang, S., Van Arsdall, M., Tedjarati, S., et al (2002) Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J.Natl.Cancer Inst. 94 (15): 1134–1142.Google Scholar
  23. 23.
    23. Jodele, S., Chantrain, C. F., Blavier, L., et al (2005) The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 65 (8): 3200–3208.Google Scholar
  24. 24.
    24. D’Armiento, J., DiColandrea, T., Dalal, S. S., 
et al (1995) Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol Cell Biol 15 (10): 5732–5739.Google Scholar
  25. 25.
    25. Masson, R., Lefebvre, O., Noel, A., et al (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J.Cell Biol 140 (6): 1535–1541.CrossRefGoogle Scholar
  26. 26.
    26. Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L., Matrisian, L. M. (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 94 (4): 1402–1407.CrossRefGoogle Scholar
  27. 27.
    27. Sternlicht, M. D., Lochter, A., Sympson, C. J., et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98 (2): 137–146.CrossRefGoogle Scholar
  28. 28.
    28. Rudolph-Owen, L. A., Cannon, P., Matrisian, L. M. (1998) Overexpression of the matrix metalloproteinase matrilysin results in premature mammary gland differentiation and male infertility. Mol Biol Cell 9 (2): 421–435.Google Scholar
  29. 29.
    29. Ha, H. Y., Moon, H. B., Nam, M. S., et al (2001) Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res 61 (3): 984–990.Google Scholar
  30. 30.
    30. McCawley, L. J., Crawford, H. C., King, L. E., Jr., Mudgett, J., Matrisian, L. M. (2004) A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 64 (19): 6965–6972.CrossRefGoogle Scholar
  31. 31.
    31. Balbin, M., Fueyo, A., Tester, A. M., et al (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35 (3): 252–257.CrossRefGoogle Scholar
  32. 32.
    32. Martin, D. C., Rüther, U., Sanchez-Sweatman, O. H., Orr, F. W., Khokha, R. (1996) Inhibition of SV40 T antigen-induced hepatocellular carcinoma in TIMP-1 transgenic mice. Oncogene 13 (3): 569–576.Google Scholar
  33. 33.
    33. Buck, T. B., Yoshiji, H., Harris, S. R., Bunce, O. R., Thorgeirsson, U. P. (1999) The effects of sustained elevated levels of circulating tissue inhibitor of metalloproteinases-1 on the development of breast cancer in mice. Ann N Y Acad Sci 878: 732–735.CrossRefGoogle Scholar
  34. 34.
    34. Rhee, J. S., Diaz, R., Korets, L., Hodgson, J. G., Coussens, L. M. (2004) TIMP-1 Alters Susceptibility to Carcinogenesis. Cancer Res 64 (3): 952–961.CrossRefGoogle Scholar
  35. 35.
    35. Kopitz, C., Gerg, M., Bandapalli, O. R., et al (2007) Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67 (18): 8615–8623.CrossRefGoogle Scholar
  36. 36.
    36. Itoh, Y., Takamura, A., Ito, N., et al (2001) Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. Embo J 20 (17): 4782–4793.CrossRefGoogle Scholar
  37. 37.
    37. Wang, Z., Juttermann, R., Soloway, P. D. (2000) TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem 275 (34): 26411–26415.CrossRefGoogle Scholar
  38. 38.
    38. Worley, J. R., Thompkins, P. B., Lee, M. H., et al (2003) Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP). Biochem J 372 (Pt 3): 799–809.CrossRefGoogle Scholar
  39. 39.
    39. Bergers, G., Coussens, L. M. (2000) Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr Opin Genet Dev 10 (1): 120–127.CrossRefGoogle Scholar
  40. 40.
    40. Chantrain, C. F., Henriet, P., Jodele, S., et al (2006) Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases. Eur J Cancer 42 (3): 310–318.CrossRefGoogle Scholar
  41. 41.
    41. Chantrain, C., Shimada, H., Jodele, S., et al (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64: 1675–1686.CrossRefGoogle Scholar
  42. 42.
    42. Heissig, B., Hattori, K., Dias, S., et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109 (5): 625–637.CrossRefGoogle Scholar
  43. 43.
    43. Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., Matrisian, L. M. (2006) Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 66 (1): 259–266.CrossRefGoogle Scholar
  44. 44.
    44. Hiratsuka, S., Nakamura, K., Iwai, S., et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2 (4): 289–300.CrossRefGoogle Scholar
  45. 45.
    45. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., Quaranta, V. (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277 (5323): 225–228.CrossRefGoogle Scholar
  46. 46.
    46. Koshikawa, N., Giannelli, G., Cirulli, V., Miyazaki, K., Quaranta, V. (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148 (3): 615–624.CrossRefGoogle Scholar
  47. 47.
    47. Lochter, A., Galosy, S., Muschler, J., Freedman, N., Werb, Z., Bissell, M. J. (1997) Matrix 
metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139 (7): 1861–1872.CrossRefGoogle Scholar
  48. 48.
    48. Coussens, L. M., Fingleton, B., Matrisian, L. M. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295 (5564): 2387–2392.CrossRefGoogle Scholar
  49. 49.
    49. Blobel, C. P. (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6 (1): 32–43.CrossRefGoogle Scholar
  50. 50.
    50. Killar, L., White, J., Black, R., Peschon, J. (1999) Adamalysins. A family of metzincins including TNF-alpha converting enzyme (TACE). Ann N Y Acad Sci 878: 442–452.CrossRefGoogle Scholar
  51. 51.
    51. White, J. M. (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15 (5): 598–606.CrossRefGoogle Scholar
  52. 52.
    52. Howard, L., Lu, X., Mitchell, S., Griffiths, S., Glynn, P. (1996) Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem J 317 (Pt 1): 45–50.Google Scholar
  53. 53.
    53. Howard, L., Zheng, Y., Horrocks, M., Maciewicz, R. A., Blobel, C. (2001) Catalytic activity of ADAM28. FEBS Lett 498 (1): 82–86.CrossRefGoogle Scholar
  54. 54.
    54. Loechel, F., Gilpin, B. J., Engvall, E., Albrechtsen, R., Wewer, U. M. (1998) Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem 273 (27): 16993–16997.CrossRefGoogle Scholar
  55. 55.
    55. Moss, M. L., Jin, S. L., Milla, M. E., et al (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385 (6618): 733–736.CrossRefGoogle Scholar
  56. 56.
    56. Carl-McGrath, S., Lendeckel, U., Ebert, M., Roessner, A., Rocken, C. (2005) The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int J Oncol 26 (1): 17–24.Google Scholar
  57. 57.
    57. Le Pabic, H., Bonnier, D., Wewer, U. M., et al (2003) ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37 (5): 1056–1066.CrossRefGoogle Scholar
  58. 58.
    58. Lendeckel, U., Kohl, J., Arndt, M., Carl-McGrath, S., Donat, H., Rocken, C. (2005) Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin Oncol 131 (1): 41–48.CrossRefGoogle Scholar
  59. 59.
    59. Peduto, L., Reuter, V. E., Shaffer, D. R., Scher, H. I., Blobel, C. P. (2005) Critical function for ADAM9 in mouse prostate cancer. Cancer Res 65 (20): 9312–9319.CrossRefGoogle Scholar
  60. 60.
    60. Roy, R., Wewer, U. M., Zurakowski, D., Pories, S. E., Moses, M. A. (2004) ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 279 (49): 51323–51330.CrossRefGoogle Scholar
  61. 61.
    61. Wu, E., Croucher, P. I., McKie, N. (1997) Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of haematological malignancies. Biochem Biophys Res Commun 235 (2): 437–442.CrossRefGoogle Scholar
  62. 62.
    62. Zheng, X., Jiang, F., Katakowski, M., et al (2007) Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci 98 (5): 674–684.CrossRefGoogle Scholar
  63. 63.
    63. Zhou, B. B., Peyton, M., He, B., et al (2006) Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10 (1): 39–50.CrossRefGoogle Scholar
  64. 64.
    64. Kenny, P. A., Bissell, M. J. (2007) Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 117 (2): 337–345.CrossRefGoogle Scholar
  65. 65.
    65. Evangelou, A. I., Winter, S. F., Huss, W. J., Bok, R. A., Greenberg, N. M. (2004) Steroid hormones, polypeptide growth factors, hormone refractory prostate cancer, and the neuroendocrine phenotype. J Cell Biochem 91 (4): 671–683.CrossRefGoogle Scholar
  66. 66.
    66. Mimeault, M., Batra, S. K. (2006) Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis 27 (1): 1–22.Google Scholar
  67. 67.
    67. Peduto, L., Reuter, V. E., Sehara-Fujisawa, A., Shaffer, D. R., Scher, H. I., Blobel, C. P. (2006) ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene 25 (39): 5462–5466.CrossRefGoogle Scholar
  68. 68.
    68. Kveiborg, M., Frohlich, C., Albrechtsen, R., et al (2005) A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65 (11): 4754–4761.CrossRefGoogle Scholar
  69. 69.
    69. Ringel, J., Jesnowski, R., Moniaux, N., et al (2006) Aberrant expression of a disintegrin and metalloproteinase 17/tumor necrosis factor-alpha converting enzyme increases the malignant potential in human pancreatic ductal adenocarcinoma. Cancer Res 66 (18): 9045–9053.CrossRefGoogle Scholar
  70. 70.
    70. Martin, J., Eynstone, L. V., Davies, M., 
Williams, J. D., Steadman, R. (2002) The role of ADAM 15 in glomerular mesangial cell migration. J Biol Chem 277 (37): 33683–33689.CrossRefGoogle Scholar
  71. 71.
    71. Millichip, M. I., Dallas, D. J., Wu, E., Dale, S., McKie, N. (1998) The metallo-disintegrin ADAM10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem Biophys Res Commun 245 (2): 594–598.CrossRefGoogle Scholar
  72. 72.
    72. Alfandari, D., Cousin, H., Gaultier, A., et al (2001) Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration. Curr Biol 11 (12): 918–930.CrossRefGoogle Scholar
  73. 73.
    73. Horiuchi, K., Weskamp, G., Lum, L., et al (2003) Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol 23 (16): 5614–5624.CrossRefGoogle Scholar
  74. 74.
    74. Herren, B., Raines, E. W., Ross, R. (1997) Expression of a disintegrin-like protein in cultured human vascular cells and in vivo. Faseb J 11 (2): 173–180.Google Scholar
  75. 75.
    75. Trochon, V., Li, H., Vasse, M., et al (1998) Endothelial metalloprotease-disintegrin protein (ADAM) is implicated in angiogenesis in vitro. Angiogenesis 2 (3): 277–285.CrossRefGoogle Scholar
  76. 76.
    76. Yarden, Y., Sliwkowski, M. X. (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2 (2): 127–137.CrossRefGoogle Scholar
  77. 77.
    77. Borrell-Pages, M., Rojo, F., Albanell, J., Baselga, J., Arribas, J. (2003) TACE is required for the activation of the EGFR by TGF-alpha in tumors. Embo J 22 (5): 1114–1124.CrossRefGoogle Scholar
  78. 78.
    78. Giaccone, G., Herbst, R. S., Manegold, C., et al (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial--INTACT 1. J Clin Oncol 22 (5): 777–784.CrossRefGoogle Scholar
  79. 79.
    79. Herbst, R. S., Giaccone, G., Schiller, J. H., et al (2004) Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial--INTACT 2. J Clin Oncol 22 (5): 785–794.CrossRefGoogle Scholar
  80. 80.
    80. Herbst, R. S., Sandler, A. B. (2004) Overview of the current status of human epidermal growth factor receptor inhibitors in lung cancer. Clin Lung Cancer 6 Suppl 1: S7–S19.CrossRefGoogle Scholar
  81. 81.
    81. Huovila, A. P., Turner, A. J., Pelto-Huikko, M., Karkkainen, I., Ortiz, R. M. (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30 (7): 413–422.CrossRefGoogle Scholar
  82. 82.
    82. Mohammed, F. F., Smookler, D. S., Taylor, S. E., et al (2004) Abnormal TNF activity in Timp3-/- mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36 (9): 969–977.CrossRefGoogle Scholar
  83. 83.
    83. Toth, M., Sohail, A., Mobashery, S., Fridman, R. (2006) MT1-MMP shedding involves an ADAM and is independent of its localization in lipid rafts. Biochem Biophys Res Commun 350 (2): 377–384.CrossRefGoogle Scholar
  84. 84.
    84. Osenkowski, P., Toth, M., Fridman, R. (2004) Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). J Cell Physiol 200 (1): 2–10.CrossRefGoogle Scholar
  85. 85.
    85. Bugge, T. H., Lund, L. R., Kombrinck, K. K., et al (1998) Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice. Oncogene 16 (24): 3097–3104.CrossRefGoogle Scholar
  86. 86.
    86. Coussens, L. M., Raymond, W. W., Bergers, G., 
et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13 (11): 1382–1397.CrossRefGoogle Scholar
  87. 87.
    87. Starcher, B., O’Neal, P., Granstein, R. D., Beissert, S. (1996) Inhibition of neutrophil elastase suppresses the development of skin tumors in hairless mice. J Invest Dermatol 107 (2): 159–163.CrossRefGoogle Scholar
  88. 88.
    88. Netzel-Arnett, S., Hooper, J. D., Szabo, R., et al (2003) Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 22 (2–3): 237–258.CrossRefGoogle Scholar
  89. 89.
    89. Caughey, G. H. (2002) New developments in the genetics and activation of mast cell proteases. Mol Immunol 38 (16–18): 1353–1357.CrossRefGoogle Scholar
  90. 90.
    90. Reiling, K. K., Krucinski, J., Miercke, L. J., Raymond, W. W., Caughey, G. H., Stroud, R. M. (2003) Structure of human pro-chymase: a model for the activating transition of granule-associated proteases. Biochemistry 42 (9): 2616–2624.CrossRefGoogle Scholar
  91. 91.
    91. Ramos-DeSimone, N., Hahn-Dantona, E., Sipley, J., Nagase, H., French, D. L., 
Quigley, J. P. (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274 (19): 13066–13076.CrossRefGoogle Scholar
  92. 92.
    92. Pollanen, J., Hedman, K., Nielsen, L. S., Dano, K., Vaheri, A. (1988) Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J Cell Biol 106 (1): 87–95.CrossRefGoogle Scholar
  93. 93.
    93. Ellis, V., Behrendt, N., Dano, K. (1991) Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem 266 (19): 12752–12758.Google Scholar
  94. 94.
    94. Wun, T. C., Reich, E. (1987) An inhibitor of plasminogen activation from human placenta. Purification and characterization. J Biol Chem 262 (8): 3646–3653.Google Scholar
  95. 95.
    95. Conese, M., Blasi, F. (1995) Urokinase/urokinase receptor system: internalization/degradation of urokinase-serpin complexes: mechanism and regulation. Biol Chem Hoppe Seyler 376 (3): 143–155.Google Scholar
  96. 96.
    96. Ploplis, V., Tipton, H., Menchen, H., 
Castellino, F. (2007) A urokinase-type plasminogen activator deficiency diminishes the
frequency of intestinal adenomas in Apc(Min/+) mice. J Pathol 213 (3): 266–274.CrossRefGoogle Scholar
  97. 97.
    97. Ploplis, V. A. (2001) Gene targeting in hemostasis. plasminogen. Front Biosci 6: D555–D569.CrossRefGoogle Scholar
  98. 98.
    98. Hahn-Dantona, E., Ramos-DeSimone, N., 
Sipley, J., Nagase, H., French, D. L., 
Quigley, J. P. (1999) Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci 878: 372–387.CrossRefGoogle Scholar
  99. 99.
    99. He, C. S., Wilhelm, S. M., Pentland, A. P., et al (1989) Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA 86 (8): 2632–2636.CrossRefGoogle Scholar
  100. 100.
    100. Monea, S., Lehti, K., Keski-Oja, J., Mignatti, P. (2002) Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 192 (2): 160–170.CrossRefGoogle Scholar
  101. 101.
    101. Blank, U., Rivera, J. (2004) The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol 25 (5): 266–273.CrossRefGoogle Scholar
  102. 102.
    102. el-Lati, S. G., Dahinden, C. A., Church, M. K. (1994) Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J Invest Dermatol 102 (5): 803–806.CrossRefGoogle Scholar
  103. 103.
    103. Karimi, K., Redegeld, F. A., Blom, R., Nijkamp, F. P. (2000) Stem cell factor and interleukin-4 increase responsiveness of mast cells to substance P. Exp Hematol 28 (6): 626–634.CrossRefGoogle Scholar
  104. 104.
    104. Hogaboam, C., Kunkel, S. L., Strieter, R. M., et al (1998) Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. J Immunol 160 (12): 6166–6171.Google Scholar
  105. 105.
    105. Kulka, M., Alexopoulou, L., Flavell, R. A., Metcalfe, D. D. (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114 (1): 174–182.CrossRefGoogle Scholar
  106. 106.
    106. Tchougounova, E., Pejler, G., Abrink, M. (2003) The chymase, mouse mast cell protease 4, constitutes the major chymotrypsin-like activity in peritoneum and ear tissue. A role for mouse mast cell protease 4 in thrombin regulation and fibronectin turnover. J Exp Med 198 (3): 423–431.CrossRefGoogle Scholar
  107. 107.
    107. Tchougounova, E., Lundequist, A., Fajardo, I., Winberg, J. O., Abrink, M., Pejler, G. (2005) A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 280 (10): 9291–9296.Google Scholar
  108. 108.
    108. Ghildyal, N., Friend, D. S., Stevens, R. L., et al (1996) Fate of two mast cell tryptases in V3 mastocytosis and normal BALB/c mice undergoing passive systemic anaphylaxis: prolonged retention of exocytosed mMCP-6 in connective tissues, and rapid accumulation of enzymatically active mMCP-7 in the blood. J Exp Med 184 (3): 1061–1073.CrossRefGoogle Scholar
  109. 109.
    109. Wong, G. W., Yasuda, S., Morokawa, N., Li, L., Stevens, R. L. (2004) Mouse chromosome 17A3.3 contains 13 genes that encode functional tryptic-like serine proteases with distinct tissue and cell expression patterns. J Biol Chem 279 (4): 2438–2452.Google Scholar
  110. 110.
    110. Caughey, G. H. (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217: 141–154.CrossRefGoogle Scholar
  111. 111.
    111. Schechter, I., Berger, A. (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27 (2): 157–162.CrossRefGoogle Scholar
  112. 112.
    112. Schechter, N. M., Choi, J. K., Slavin, D. A., et al (1986) Identification of a chymotrypsin-like proteinase in human mast cells. J Immunol 137 (3): 962–970.Google Scholar
  113. 113.
    113. He, S., Walls, A. F. (1998) Human mast cell chymase induces the accumulation of neutrophils, eosinophils and other inflammatory cells in vivo. Br J Pharmacol 125 (7): 1491–1500.CrossRefGoogle Scholar
  114. 114.
    114. Gruber, B. L., Marchese, M. J., Suzuki, K., et al (1989) Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J Clin Invest 84 (5): 1657–1662.CrossRefGoogle Scholar
  115. 115.
    115. Hartmann, T., Ruoss, S. J., Raymond, W. W., Seuwen, K., Caughey, G. H. (1992) Human tryptase as a potent, cell-specific mitogen: role of signaling pathways in synergistic responses. Am J Physiol 262 (5 Pt 1): L528–L534.Google Scholar
  116. 116.
    116. Ruoss, S. J., Hartmann, T., Caughey, G. H. (1991) Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 88 (2): 493–499.CrossRefGoogle Scholar
  117. 117.
    117. Cairns, J. A., Walls, A. F. (1996) Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol 156 (1): 275–283.Google Scholar
  118. 118.
    118. Huang, C., Friend, D. S., Qiu, W. T., et al (1998) Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol 160 (4): 1910–1919.Google Scholar
  119. 119.
    119. Compton, S. J., Cairns, J. A., Holgate, S. T., Walls, A. F. (1999) Interaction of human mast cell tryptase with endothelial cells to stimulate inflammatory cell recruitment. Int Arch Allergy Immunol 118 (2–4): 204–205.CrossRefGoogle Scholar
  120. 120.
    120. Wolters, P. J., Pham, C. T., Muilenburg, D. J., Ley, T. J., Caughey, G. H. (2001) Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem 276 (21): 18551–18566.CrossRefGoogle Scholar
  121. 121.
    121. Fouret, P., du Bois, R. M., Bernaudin, J. F., Takahashi, H., Ferrans, V. J., Crystal, R. G. (1989) Expression of the neutrophil elastase gene during human bone marrow cell differentiation. J Exp Med 169 (3): 833–845.CrossRefGoogle Scholar
  122. 122.
    122. Zimmer, M., Medcalf, R. L., Fink, T. M., Mattmann, C., Lichter, P., Jenne, D. E. (1992) Three human elastase-like genes coordinately expressed in the myelomonocyte lineage are organized as a single genetic locus on 19pter. Proc Natl Acad Sci USA 89 (17): 8215–8219.CrossRefGoogle Scholar
  123. 123.
    123. Chua, F., Laurent, G. J. (2006) Neutrophil elastase: mediator of extracellular matrix destruction and accumulation. Proc Am Thorac Soc 3 (5): 424–427.CrossRefGoogle Scholar
  124. 124.
    124. Akizuki, M., Fukutomi, T., Takasugi, M., 
et al (2007) Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia 9 (3): 260–264.CrossRefGoogle Scholar
  125. 125.
    125. Yamashita, J., Tashiro, K., Yoneda, S., Kawahara, K., Shirakusa, T. (1996) Local increase in polymorphonuclear leukocyte elastase is associated with tumor invasiveness in non-small cell lung cancer. Chest 109 (5): 1328–1334.CrossRefGoogle Scholar
  126. 126.
    126. Lane, A., Ley, T. J. (2003) Neutrophil elastase cleaves PML-RARalpha and is important for the development of acute promyelocytic leukemia in mice. Cell 1115: 305–318.CrossRefGoogle Scholar
  127. 127.
    127. Ferry, G., Lonchampt, M., Pennel, L., de Nanteuil, G., Canet, E., Tucker, G. C. (1997) Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Lett 402 (2–3): 111–115.CrossRefGoogle Scholar
  128. 128.
    128. Nakamura, H., Yoshimura, K., McElvaney, N. G., Crystal, R. G. (1992) Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest 89 (5): 1478–1484.CrossRefGoogle Scholar
  129. 129.
    129. Cepinskas, G., Sandig, M., Kvietys, P. R. (1999) PAF-induced elastase-dependent neutrophil transendothelial migration is associated with the mobilization of elastase to the neutrophil surface and localization to the migrating front. J Cell Sci 112 (Pt 12): 1937–1945.Google Scholar
  130. 130.
    130. Belaaouaj, A., McCarthy, R., Baumann, M., et al (1998) Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med 4 (5): 615–618.CrossRefGoogle Scholar
  131. 131.
    131. Brinkmann, V., Reichard, U., Goosmann, C., et al (2004) Neutrophil extracellular traps kill bacteria. Science 303 (5663): 1532–1535.CrossRefGoogle Scholar
  132. 132.
    132. Young, R. E., Voisin, M. B., Wang, S., Dangerfield, J., Nourshargh, S. (2007) Role of neutrophil elastase in LTB(4)-induced neutrophil transmigration in vivo assessed with a specific inhibitor and neutrophil elastase deficient mice. Br J Pharmacol 151 (5): 628–637.CrossRefGoogle Scholar
  133. 133.
    133. Woodman, R. C., Reinhardt, P. H., Kanwar, S., Johnston, F. L., Kubes, P. (1993) Effects of human neutrophil elastase (HNE) on neutrophil function in vitro and in inflamed microvessels. Blood 82 (7): 2188–2195.Google Scholar
  134. 134.
    134. Sato, T., Takahashi, S., Mizumoto, T., et al (2006) Neutrophil elastase and cancer. Surg Oncol 15 (4): 217–222.CrossRefGoogle Scholar
  135. 135.
    135. Nozawa, F., Hirota, M., Okabe, A., et al (2000) Elastase activity enhances the adhesion of neutrophil and cancer cells to vascular endothelial cells. J Surg Res 94 (2): 153–158.CrossRefGoogle Scholar
  136. 136.
    136. Hirche, T. O., Atkinson, J. J., Bahr, S., Belaaouaj, A. (2004) Deficiency in neutrophil elastase does not impair neutrophil recruitment to inflamed sites. Am J Respir Cell Mol Biol 30 (4): 576–584.Google Scholar
  137. 137.
    137. Young, R. E., Thompson, R. D., Larbi, K. Y., et al (2004) Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J Immunol 172 (7): 4493–4502.Google Scholar
  138. 138.
    138. Baugh, R. J., Travis, J. (1976) Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry 15 (4): 836–841.CrossRefGoogle Scholar
  139. 139.
    139. McDonald, J. A., Kelley, D. G. (1980) Degradation of fibronectin by human leukocyte elastase. Release of biologically active fragments. J Biol Chem 255 (18): 8848–8858.Google Scholar
  140. 140.
    140. Mainardi, C. L., Dixit, S. N., Kang, A. H. (1980) Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J Biol Chem 255 (11): 5435–5441.Google Scholar
  141. 141.
    141. Shamamian, P., Schwartz, J. D., Pocock, B. J., et al (2001) Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: a role for inflammatory cells in tumor invasion and angiogenesis. J Cell Physiol 189 (2): 197–206.CrossRefGoogle Scholar
  142. 142.
    142. Okada, Y., Nakanishi, I. (1989) Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (‘gelatinase’) by human neutrophil elastase and cathepsin G. FEBS Lett. 249 (2): 353–356.CrossRefGoogle Scholar
  143. 143.
    143. Liu, Z., Zhou, X., Shapiro, S. D., et al (2000) The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102 (5): 647–655.CrossRefGoogle Scholar
  144. 144.
    144. Adkison, A. M., Raptis, S. Z., Kelley, D. G., Pham, C. T. (2002) Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 109 (3): 363–371.Google Scholar
  145. 145.
    145. Owen, C. A., Campbell, M. A., Sannes, P. L., Boukedes, S. S., Campbell, E. J. (1995) Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Biol 131 (3): 775–789.CrossRefGoogle Scholar
  146. 146.
    146. Lee, W. L., Downey, G. P. (2001) Leukocyte elastase: physiological functions and role in acute lung injury. Am J Respir Crit Care Med 164 (5): 896–904.Google Scholar
  147. 147.
    147. Matrisian, L. M. (1999) Cancer biology: extracellular proteinases in malignancy. Curr Biol 9 (20): R776–R778.CrossRefGoogle Scholar
  148. 148.
    148. List, K., Bugge, T. H., Szabo, R. (2006) Matriptase: potent proteolysis on the cell surface. Mol Med 12 (1–3): 1–7.CrossRefGoogle Scholar
  149. 149.
    149. Mok, S. C., Chao, J., Skates, S., et al (2001) Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 93 (19): 1458–1464.Google Scholar
  150. 150.
    150. List, K., Szabo, R., Molinolo, A., et al (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19 (16): 1934–1950.CrossRefGoogle Scholar
  151. 151.
    151. Klezovitch, O., Chevillet, J., Mirosevich, J., Roberts, R. L., Matusik, R. J., Vasioukhin, V. (2004) Hepsin promotes prostate cancer progression and metastasis. Cancer Cell 6 (2): 185–195.CrossRefGoogle Scholar
  152. 152.
    152. Moran, P., Li, W., Fan, B., Vij, R., Eigenbrot, C., Kirchhofer, D. (2006) Pro-urokinase-type plasminogen activator is a substrate for hepsin. J Biol Chem 281 (41): 30439–30446.CrossRefGoogle Scholar
  153. 153.
    153. Suzuki, M., Kobayashi, H., Kanayama, N., et al (2004) Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J Biol Chem 279 (15): 14899–14908.CrossRefGoogle Scholar
  154. 154.
    154. Jin, X., Yagi, M., Akiyama, N., et al (2006) Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 97 (12): 1327–1334.CrossRefGoogle Scholar
  155. 155.
    155. Turk, D., Janjic, V., Stern, I., et al (2001) Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. Embo J 20 (23): 6570–6582.CrossRefGoogle Scholar
  156. 156.
    156. Turk, V., Turk, B., Guncar, G., Turk, D., Kos, J. (2002) Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. Adv Enzyme Regul 42: 285–303.CrossRefGoogle Scholar
  157. 157.
    157. McGuire, M. J., Lipsky, P. E., Thiele, D. L. (1992) Purification and characterization of dipeptidyl peptidase I from human spleen. Arch Biochem Biophys 295 (2): 280–288.CrossRefGoogle Scholar
  158. 158.
    158. Hallgren, J., Pejler, G. (2006) Biology of mast cell tryptase. An inflammatory mediator. Febs J 273 (9): 1871–1895.CrossRefGoogle Scholar
  159. 159.
    159. Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., Turk, B. (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13 (4): 387–403.CrossRefGoogle Scholar
  160. 160.
    160. Dolenc, I., Turk, B., Pungercic, G., Ritonja, A., Turk, V. (1995) Oligomeric structure and substrate induced inhibition of human cathepsin C. J Biol Chem 270 (37): 21626–21631.Google Scholar
  161. 161.
    161. Cigic, B., Dahl, S. W., Pain, R. H. (2000) The residual pro-part of cathepsin C fulfills the criteria required for an intramolecular chaperone in folding and stabilizing the human proenzyme. Biochemistry 39 (40): 12382–12390.CrossRefGoogle Scholar
  162. 162.
    162. Dahl, S. W., Halkier, T., Lauritzen, C., et al (2001) Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40 (6): 1671–1678.CrossRefGoogle Scholar
  163. 163.
    163. Shresta, S., Pham, C. T., Thomas, D. A., Graubert, T. A., Ley, T. J. (1998) How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol 10 (5): 581–587.CrossRefGoogle Scholar
  164. 164.
    164. Mallen-St Clair, J., Pham, C. T., Villalta, S. A., Caughey, G. H., Wolters, P. J. (2004) Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest 113 (4): 628–634.Google Scholar
  165. 165.
    165. Gocheva, V., Zeng, W., Ke, D., et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20 (5): 543–556.CrossRefGoogle Scholar
  166. 166.
    166. Joyce, J. A., Baruch, A., Chehade, K., et al (2004) Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5 (5): 443–453.CrossRefGoogle Scholar
  167. 167.
    167. Guy, C. T., Cardiff, R. D., Muller, W. J. (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12 (3): 954–961.Google Scholar
  168. 168.
    168. Vasiljeva, O., Papazoglou, A., Kruger, A., et al (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66 (10): 5242–5250.CrossRefGoogle Scholar
  169. 169.
    169. de Haar, S. F., Jansen, D. C., Schoenmaker, T., De Vree, H., Everts, V., Beertsen, W. (2004) Loss-of-function mutations in cathepsin C in two families with Papillon-Lefevre syndrome are associated with deficiency of serine proteinases in PMNs. Hum Mutat 23 (5): 524.CrossRefGoogle Scholar
  170. 170.
    170. Frezzini, C., Leao, J. C., Porter, S. (2004) Cathepsin C involvement in the aetiology of Papillon-Lefevre syndrome. Int J Paediatr Dent 14 (6): 466–467.CrossRefGoogle Scholar
  171. 171.
    171. Hewitt, C., McCormick, D., Linden, G., et al (2004) The role of cathepsin C in Papillon-Lefevre syndrome, prepubertal periodontitis, and aggressive periodontitis. Hum Mutat 23 (3): 222–228.CrossRefGoogle Scholar
  172. 172.
    172. Noack, B., Gorgens, H., Hoffmann, T., et al (2004) Novel mutations in the cathepsin C gene in patients with pre-pubertal aggressive periodontitis and Papillon-Lefevre syndrome. J Dent Res 83 (5): 368–370.Google Scholar
  173. 173.
    173. Pham, C. T., Ivanovich, J. L., Raptis, S. Z., Zehnbauer, B., Ley, T. J. (2004) Papillon-Lefevre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans. J Immunol 173 (12): 7277–7281.Google Scholar
  174. 174.
    174. Pham, C. T., Ley, T. J. (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 96 (15): 8627–8632.CrossRefGoogle Scholar
  175. 175.
    175. Sheth, P. D., Pedersen, J., Walls, A. F., McEuen, A. R. (2003) Inhibition of dipeptidyl peptidase I in the human mast cell line HMC-1: blocked activation of tryptase, but not of the predominant chymotryptic activity. Biochem Pharmacol 66 (11): 2251–2262.CrossRefGoogle Scholar
  176. 176.
    176. Sakai, K., Ren, S., Schwartz, L. B. (1996) A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest 97 (4): 988–995.CrossRefGoogle Scholar
  177. 177.
    177. Overall, C. M., Kleifeld, O. (2006) Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6 (3): 227–239.CrossRefGoogle Scholar
  178. 178.
    178. Bell-McGuinn, K. M., Garfall, A. L., Bogyo, M., Hanahan, D., Joyce, J. A. (2007) Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res 67 (15): 7378–7385.CrossRefGoogle Scholar
  179. 179.
    179. Lakka, S. S., Gondi, C. S., Yanamandra, N., et al (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23 (27): 4681–4689.CrossRefGoogle Scholar
  180. 180.
    180. Lakka, S. S., Gondi, C. S., Dinh, D. H., 
et al (2005) Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem 280 (23): 21882–21892.CrossRefGoogle Scholar
  181. 181.
    181. Lakka, S. S., Gondi, C. S., Yanamandra, N., et al (2003) Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res 63 (10): 2454–2461.Google Scholar
  182. 182.
    182. Devy, L., de Groot, F. M., Blacher, S., et al (2004) Plasmin-activated doxorubicin prodrugs containing a spacer reduce tumor growth and angiogenesis without systemic toxicity. Faseb J 18 (3): 565–567.Google Scholar
  183. 183.
    183. Panchal, R. G., Cusack, E., Cheley, S., Bayley, H. (1996) Tumor protease-activated, pore-forming toxins from a combinatorial library. Nat Biotechnol 14 (7): 852–856.CrossRefGoogle Scholar
  184. 184.
    184. Caldas, H., Jaynes, F. O., Boyer, M. W., Hammond, S., Altura, R. A. (2006) Survivin and Granzyme B-induced apoptosis, a novel anticancer therapy. Mol Cancer Ther 5 (3): 693–703.CrossRefGoogle Scholar
  185. 185.
    185.Jodele, S., Chantrain C. F., Blavier, L., Lutzko, C., Crooks, G. M., Shimada, H., Coussens, L. M., Declerck, Y. A. (2005) The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. 
Cancer Res 65 (8): 3200–3208Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nesrine I. Affara
  • Pauline Andreu
  • Lisa M. Coussens
    • 1
    Email author
  1. 1.Department of Pathology and Comprehensive Cancer CenterUniversity of CaliforniaSan Francisco

Personalised recommendations