Skip to main content

The GAL4 System

A Versatile System for the Expression of Genes

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 420))

Abstract

Over the past decade the adoption and refinement of the GAL4 system by the Drosophila field has resulted in a wide array of tools with which the researcher can drive transgene expression in a precise spatiotemporal pattern. The GAL4 system relies on two components: (1) GAL4, a transcriptional activator from yeast, which is expressed in a tissue-specific manner and (2) a transgene under the control of the upstream activation sequence that is bound by GAL4 (UASG). The two components are brought together in a simple genetic cross. In the progeny of the cross, the transgene is only transcribed in those cells or tissues expressing the GAL4 protein. Recent modifications of the GAL4 system have improved the control of both the initiation and the spatial restriction of transgene expression. Here we describe the GAL4 system highlighting the properties that make it a powerful tool for the analysis of gene function in Drosophila and higher organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Davis, R. L., Weintraub, H., and Lassar, A. B. (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000.

    Article  CAS  PubMed  Google Scholar 

  2. Bouwmeester, T., Kim, S., Sasai, Y., Lu, B., and De Robertis, E. M. (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382, 595–601.

    Article  CAS  PubMed  Google Scholar 

  3. Southall, T. D., Terhzaz, S., Cabrero, P., et al. (2006) Novel subcellular locations and functions for secretory pathway Ca2+/Mn2+-ATPases. Physiol. Genomics 26, 35–45.

    Article  CAS  PubMed  Google Scholar 

  4. Huang, A. M. and Rubin, G. M. (2000) A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster. Genetics 156, 1219–1230.

    CAS  PubMed  Google Scholar 

  5. Zhu, M. Y., Wilson, R., and Leptin, M. (2005) A screen for genes that influence fibroblast growth factor signal transduction in Drosophila. Genetics 170, 767–777.

    Article  CAS  PubMed  Google Scholar 

  6. Miklos, G. L. and Rubin, G. M. (1996) The role of the genome project in determining gene function: insights from model organisms. Cell 86, 521–529.

    Article  CAS  PubMed  Google Scholar 

  7. Giordano, E., Rendina, R., Peluso, I., and Furia, M. (2002) RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 160, 637–648.

    CAS  PubMed  Google Scholar 

  8. Piccin, A., Salameh, A., Benna, C., et al. (2001) Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res. 29, E55–E55.

    Article  CAS  PubMed  Google Scholar 

  9. Van Roessel, P., Hayward, N. M., Barros, C. S., and Brand, A. H. (2002) Two-color GFP imaging demonstrates cell-autonomy of GAL4-driven RNA interference in Drosophila. Genesis 34, 170–173.

    Article  PubMed  Google Scholar 

  10. Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

    CAS  PubMed  Google Scholar 

  11. Hashimoto, H., Kikuchi, Y., Nogi, Y., and Fukasawa, T. (1983) Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. Isolation and characterization of the regulatory gene GAL4. Mol. Gen. Genet. 191, 31–38.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, J. and Ptashne, M. (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847–853.

    Article  CAS  PubMed  Google Scholar 

  13. Ptashne, M. (1988) How eukaryotic transcriptional activators work. Nature 335, 683–689.

    Article  CAS  PubMed  Google Scholar 

  14. Lue, N. F., Chasman, D. I., Buchman, A. R., and Kornberg, R. D. (1987) Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol. Cell Biol. 7, 3446–3451.

    CAS  PubMed  Google Scholar 

  15. Wu, Y., Reece, R. J., and Ptashne, M. (1996) Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15, 3951–3963.

    CAS  PubMed  Google Scholar 

  16. Bram, R. J., Lue, N. F., and Kornberg, R. D. (1986) A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription. EMBO J. 5, 603–608.

    CAS  PubMed  Google Scholar 

  17. Giniger, E., Varnum, S. M., and Ptashne, M. (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40, 767–774.

    Article  CAS  PubMed  Google Scholar 

  18. Webster, N., Jin, J. R., Green, S., Hollis, M., and Chambon, P. (1988) The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell 52, 169–178.

    Article  CAS  PubMed  Google Scholar 

  19. Kakidani, H. and Ptashne, M. (1988) GAL4 activates gene expression in mammalian cells. Cell 52, 161–167.

    Article  CAS  PubMed  Google Scholar 

  20. Ma, J., Przibilla, E., Hu, J., Bogorad, L., and Ptashne, M. (1988) Yeast activators stimulate plant gene expression. Nature 334, 631–633.

    Article  CAS  PubMed  Google Scholar 

  21. Fischer, J. A., Giniger, E., Maniatis, T., and Ptashne, M. (1988) GAL4 activates transcription in Drosophila. Nature 332, 853–856.

    Article  CAS  PubMed  Google Scholar 

  22. Bellen, H. J., O’Kane, C. J., Wilson, C., Grossniklaus, U., Pearson, R. K., and Gehring, W. J. (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 3, 1288–1300.

    Article  CAS  PubMed  Google Scholar 

  23. O’Kane, C. J. and Gehring, W. J. (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. USA 84, 9123–9127.

    Article  PubMed  Google Scholar 

  24. Hayashi, S., Ito, K., Sado, Y., et al. (2002) GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34, 58–61.

    Article  CAS  PubMed  Google Scholar 

  25. Hidalgo, A. and Brand, A. H. (1997) Targeted neuronal ablation: the role of pioneer neurons in guidance and fasciculation in the CNS of Drosophila. Development 124, 3253–3262.

    CAS  PubMed  Google Scholar 

  26. Zhou, L., Schnitzler, A., Agapite, J., Schwartz, L. M., Steller, H., and Nambu, J. R. (1997) Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc. Natl. Acad. Sci. USA 94, 5131–5136.

    Article  CAS  PubMed  Google Scholar 

  27. Martin-Bermudo, M. D., Dunin-Borkowski, O. M., and Brown, N. H. (1997) Specificity of PS integrin function during embryogenesis resides in the alpha subunit extracellular domain. EMBO J. 16, 4184–4193.

    Article  CAS  PubMed  Google Scholar 

  28. Brand, A. H., Manoukian, A. S., and Perrimon, N. (1994) Ectopic Expression in Drosophila, in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology, (Goldstein, L. S. B. and Fyrberg, E. A., eds.), Academic Press, San Diego, pp. 635–654.

    Google Scholar 

  29. Lee, T. and Luo, L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461.

    Article  CAS  PubMed  Google Scholar 

  30. Lee, T. and Luo, L. (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254.

    Article  CAS  PubMed  Google Scholar 

  31. Suster, M. L., Seugnet, L., Bate, M., and Sokolowski, M. B. (2004) Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 39, 240–245.

    Article  CAS  PubMed  Google Scholar 

  32. Vef, O., Cleppien, D., Loffler, T., Altenhein, B., and Technau, G. M. (2006) A new strategy for efficient in vivo screening of mutagenized Drosophila embryos. Dev. Genes Evol. 216, 105–108.

    Article  PubMed  Google Scholar 

  33. McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., and Davis, R. L. (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768.

    Article  CAS  PubMed  Google Scholar 

  34. Matsumoto, K., Toh-e, A., and Oshima, Y. (1978) Genetic control of galactokinase synthesis in Saccharomyces cerevisiae: evidence for constitutive expression of the positive regulatory gene gal4. J. Bacteriol. 134, 446–457.

    CAS  PubMed  Google Scholar 

  35. Han, D. D., Stein, D., and Stevens, L. M. (2000) Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127, 573–583.

    CAS  PubMed  Google Scholar 

  36. Osterwalder, T., Yoon, K. S., White, B. H., and Keshishian, H. (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA 98, 12,596–12,601.

    Article  CAS  PubMed  Google Scholar 

  37. Roman, G., Endo, K., Zong, L., and Davis, R. L. (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 12,602–12,607.

    Article  CAS  PubMed  Google Scholar 

  38. Mao, Z., Roman, G., Zong, L., and Davis, R. L. (2004) Pharmacogenetic rescue in time and space of the rutabaga memory impairment by using Gene-Switch. Proc. Natl. Acad. Sci. USA 101, 198–203.

    Article  CAS  PubMed  Google Scholar 

  39. Ferris, J., Ge, H., Liu, L., and Roman, G. (2006) G(o) signaling is required for Drosophila associative learning. Nat. Neurosci. 9, 1036–1040.

    Article  CAS  PubMed  Google Scholar 

  40. Giannakou, M. E., Goss, M., Junger, M. A., Hafen, E., Leevers, S. J., and Partridge, L. (2004) Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361.

    Article  CAS  PubMed  Google Scholar 

  41. Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771.

    CAS  PubMed  Google Scholar 

  42. Nellen, D., Burke, R., Struhl, G., and Basler, K. (1996) Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368.

    Article  CAS  PubMed  Google Scholar 

  43. Pignoni, F. and Zipursky, S. L. (1997) Induction of Drosophila eye development by decapentaplegic. Development 124, 271–278.

    CAS  PubMed  Google Scholar 

  44. Struhl, G. and Basler, K. (1993) Organizing activity of wingless protein in Drosophila. Cell 72, 527–540.

    Article  CAS  PubMed  Google Scholar 

  45. Newsome, T. P., Asling, B., and Dickson, B. J. (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860.

    CAS  PubMed  Google Scholar 

  46. Rogulja, D. and Irvine, K. D. (2005) Regulation of cell proliferation by a morphogen gradient. Cell 123, 449–461.

    Article  CAS  PubMed  Google Scholar 

  47. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  CAS  PubMed  Google Scholar 

  48. Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755.

    Article  CAS  PubMed  Google Scholar 

  49. Bello, B., Resendez-Perez, D., and Gehring, W. J. (1998) Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 125, 2193–2202.

    CAS  PubMed  Google Scholar 

  50. Bieschke, E. T., Wheeler, J. C., and Tower, J. (1998) Doxycycline-induced transgene expression during Drosophila development and aging. Mol. Gen. Genet. 258, 571–579.

    Article  CAS  PubMed  Google Scholar 

  51. McGuire, S. E., Roman, G., and Davis, R. L. (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 20, 384–391.

    Article  CAS  PubMed  Google Scholar 

  52. Stebbins, M. J. and Yin, J. C. (2001) Adaptable doxycycline-regulated gene expression systems for Drosophila. Gene 270, 103–111.

    Article  CAS  PubMed  Google Scholar 

  53. Stebbins, M. J., Urlinger, S., Byrne, G., Bello, B., Hillen, W., and Yin, J. C. (2001) Tetracycline-inducible systems for Drosophila. Proc. Natl. Acad. Sci. USA 98, 10,775–10,780.

    Article  CAS  PubMed  Google Scholar 

  54. Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., and Hillen, W. (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97, 7963–7968.

    Article  CAS  PubMed  Google Scholar 

  55. Mehren, J. E. and Griffith, L. C. (2004) Calcium-independent calcium/calmodulindependent protein kinase II in the adult Drosophila CNS enhances the training of pheromonal cues. J. Neurosci. 24, 10,584–10,593.

    Article  CAS  PubMed  Google Scholar 

  56. Kidd, S., Lieber, T., and Young, M. W. (1998) Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 12, 3728–3740.

    Article  CAS  PubMed  Google Scholar 

  57. Szuts, D. and Bienz, M. (2000) LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator. Proc. Natl. Acad. Sci. USA 97, 5351–5356.

    Article  CAS  PubMed  Google Scholar 

  58. Lai, S. L. and Lee, T. (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709.

    Article  CAS  PubMed  Google Scholar 

  59. Luan, H., Peabody, N. C., Vinson, C. R., and White, B. H. (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436.

    Article  CAS  PubMed  Google Scholar 

  60. Rorth, P. (1996) A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12,418–12,422.

    Article  CAS  PubMed  Google Scholar 

  61. Rorth, P., Szabo, K., Bailey, A., et al. (1998) Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057.

    CAS  PubMed  Google Scholar 

  62. Toba, G., Ohsako, T., Miyata, N., Ohtsuka, T., Seong, K. H., and Aigaki, T. (1999) The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics 151, 725–737.

    CAS  PubMed  Google Scholar 

  63. http://genexel.com/eng/index.htm. Accessed January 5, 2007.

    Google Scholar 

  64. Staudt, N., Molitor, A., Somogyi, K., et al. (2005) Gain-of-function screen for genes that affect Drosophila muscle pattern formation. PLoS Genet. 1, 499–506.

    Article  CAS  Google Scholar 

  65. Tseng, A. S. and Hariharan, I. K. (2002) An overexpression screen in Drosophila for genes that restrict growth or cell-cycle progression in the developing eye. Genetics 162, 229–243.

    CAS  PubMed  Google Scholar 

  66. Molnar, C., Lopez-Varea, A., Hernandez, R., and de Celis, J. F. (2006) A gain of function screen identifying genes required for vein formation in the Drosophila melanogaster wing. Genetics 1635–1659.

    Google Scholar 

  67. Zettervall, C. J., Anderl, I., Williams, M. J., et al. (2004) A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. USA 101, 14,192–14,197.

    Article  CAS  PubMed  Google Scholar 

  68. Kraut, R., Menon, K., and Zinn, K. (2001) A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Curr. Biol. 11, 417–430.

    Article  CAS  PubMed  Google Scholar 

  69. Duffy, J. B., Harrison, D. A., and Perrimon, N. (1998) Identifying loci required for follicular patterning using directed mosaics. Development 125, 2263–2271.

    CAS  PubMed  Google Scholar 

  70. Stowers, R. S. and Schwarz, T. L. (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639.

    CAS  PubMed  Google Scholar 

  71. Lee, C. H., Herman, T., Clandinin, T. R., Lee, R., and Zipursky, S. L. (2001) N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30, 437–450.

    Article  CAS  PubMed  Google Scholar 

  72. Rousset, R., Mack, J. A., Wharton, K. A., Jr., et al. (2001) Naked cuticle targets dishevelled to antagonize Wnt signal transduction. Genes. Dev. 15, 658–671.

    Article  CAS  PubMed  Google Scholar 

  73. Pascual, A., Huang, K. L., and Preat, T. (2005) Conditional UAS-targeted repression in Drosophila. Nucleic Acids Res. 33, e7.

    Article  PubMed  Google Scholar 

  74. Engineer, C. B., Fitzsimmons, K. C., Schmuke, J. J., Dotson, S. B., and Kranz, R. G. (2005) Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC Plant. Biol. 5, 9.

    Article  PubMed  Google Scholar 

  75. Laplaze, L., Parizot, B., Baker, A., et al. (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J. Exp. Bot. 56, 2433–2442.

    Article  CAS  PubMed  Google Scholar 

  76. Scheer, N. and Campos-Ortega, J. A. (1999) Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80, 153–158.

    Article  CAS  PubMed  Google Scholar 

  77. Hartley, K. O., Nutt, S. L., and Amaya, E. (2002) Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proc. Natl. Acad. Sci. USA 99, 1377–1382.

    Article  CAS  PubMed  Google Scholar 

  78. Hu, Q., Ueno, N., and Behringer, R. R. (2004) Restriction of BMP4 activity domains in the developing neural tube of the mouse embryo. EMBO Rep. 5, 734–739.

    Article  CAS  PubMed  Google Scholar 

  79. Rowitch, D. H., S-Jacques, B., Lee, S. M., Flax, J. D., Snyder, E. Y., and McMahon, A. P. (1999) Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci. 19, 8954–8965.

    CAS  PubMed  Google Scholar 

  80. Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G., and Wandless, T. J. (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004.

    Article  CAS  PubMed  Google Scholar 

  81. Zeidler, M. P., Tan, C., Bellaiche, Y., et al. (2004) Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat. Biotechnol. 22, 871–876.

    Article  CAS  PubMed  Google Scholar 

  82. Handler, A. M. (2002) Prospects for using genetic transformation for improved SIT and new biocontrol methods. Genetica 116, 137–149.

    Article  CAS  PubMed  Google Scholar 

  83. Chan, H. Y. (2002) Fly-ing from genes to drugs. Trends Mol. Med. 8, 99–101.

    Article  CAS  PubMed  Google Scholar 

  84. Stilwell, G. E., Saraswati, S., Littleton, J. T., and Chouinard, S. W. (2006) Development of a Drosophila seizure model for in vivo high-throughput drug screening. Eur. J. Neurosci. 24, 2211–2222.

    Article  PubMed  Google Scholar 

  85. Tickoo, S. and Russell, S. (2002) Drosophila melanogaster as a model system for drug discovery and pathway screening. Curr. Opin. Pharmacol. 2, 555–560.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Elliott, D.A., Brand, A.H. (2008). The GAL4 System. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 420. Humana Press. https://doi.org/10.1007/978-1-59745-583-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-583-1_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-817-1

  • Online ISBN: 978-1-59745-583-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics