Skip to main content

Analysis of Proteins in Solution Using Affinity Capillary Electrophoresis

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 421))

Summary

Analysis of protein interactions by means of capillary electrophoresis (CE) has unique challenges and rewards. The choice of analysis conditions, especially involving electrophoresis buffers, are crucial and not universal for protein analysis. If conditions for analysis can be worked out, it is possible to utilize CE quantitatively and qualitatively to characterize protein-ligand binding involving unmodified molecules in solution and taking place under physiological conditions. This chapter deals with the most important practical considerations in capillary electrophoretic affinity approaches, affinity CE (ACE). The text emphasizes the most critical factors for successful analyses and has application examples illustrating various types of information offered by ACE-based studies. Also included are step-by-step accounts of the two main classes of experimental design: the pre-equilibration ACE (in the form of CE-frontal analysis (CE-FA)) and mobility shift ACE together with examples of their use. The ACE approaches for binding assays of proteins should be considered when the biological material is scarce, when any kind of labeling is not possible or desired, when the interacting molecules are the same size and when rapid and simple method development is a priority.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lauer, H. H. and McManigill, D. (1986) Capillary zone electrophoresis of proteins in untreated fused silica tubing. Anal. Chem. 58, 166–170.

    CAS  Google Scholar 

  2. Jorgenson, J. W. and Lukacs, K. D. (1981) Zone electrophoresis in open-tubular glass capillaries. Anal. Chem. 53, 1298–1302.

    CAS  Google Scholar 

  3. Jorgenson, J. W. and Lukacs, K. D. (1981) Free-zone electrophoresis in glass capillaries. Clin. Chem. 27, 1551–1553.

    CAS  PubMed  Google Scholar 

  4. Jorgenson, J. W. and Lukacs, K. D. (1981) High-resolution separations based on electrophoresis and electroosmosis. J. Chromatogr. 218, 209–216.

    CAS  Google Scholar 

  5. Grossman, P. D., Colburn, J. C., Lauer, H. K., Nielsen, R. G., Riggin, R. M., Sittampalam, G. S., and Rickard, E. C. (1989) Application of free-solution capillary electrophoresis to the analytical scale separation of proteins and peptides. Anal. Chem. 61, 1186–1194.

    CAS  PubMed  Google Scholar 

  6. Grossman, P. D., Wilson, K. J., Petrie, G., and Lauer, H. H. (1988) Effect of buffer pH and peptide composition on the selectivity of peptide separations by capillary zone electrophoresis. Anal. Biochem. 173, 265–270.

    CAS  PubMed  Google Scholar 

  7. Karger, B. L. (1989) High-performance capillary electrophoresis. Nature 339, 641–642.

    CAS  PubMed  Google Scholar 

  8. Landers, J. P., Oda, R. P., Spelsberg, T. C., Nolan, J. A., and Ulfelder, K. J. (1993) Capillary electrophoresis: a powerful microanalytical technique for biologically active molecules. Biotechniques 14, 98–111.

    CAS  PubMed  Google Scholar 

  9. stergaard, J. and Heegaard, N. H. (2003) Capillary electrophoresis frontal analysis: principles and applications for the study of drug-plasma protein binding. Electrophoresis 24, 2903–2913.

    Google Scholar 

  10. Heegaard, N. H. (2003) Applications of affinity interactions in capillary electrophoresis. Electrophoresis 24, 3879–3891.

    CAS  PubMed  Google Scholar 

  11. Shimura, K. and Kasai, K. (1998) Capillary affinophoresis as a versatile tool for the study of biomolecular interactions: a mini-review. J. Mol. Recognit. 11, 134–140.

    CAS  PubMed  Google Scholar 

  12. Heegaard, N. H. H. (1998) Biospecific interactions measured by capillary electrophoresis., in New methods for the study of molecular complexes (Ens, W., Standing, K. G., Chernushevich, I. V., eds.). Kluwer Academic Publishers, Dordrecht, pp. 305–318.

    Google Scholar 

  13. Heegaard, N. H. H. (1998) Capillary electrophoresis for the study of affinity interactions. J. Mol. Recogn. 11, 141–148.

    CAS  Google Scholar 

  14. Heegaard, N. H. H. and Shimura, K. (1998) Determination of affinity constants by capillary electrophoresis., in Quantitative Analysis of Biospecific Interactions (Lundahl, P., Lundqvist, A., Greijer, E., eds.). Harwood academic publishers, pp. 15–34.

    Google Scholar 

  15. Heegaard, N. H. H. (1998) Electrophoretic analysis of reversible interactions, in Quantitative analysis of biospecific interactions (Lundahl, P., Lundqvist, A., Greijer, E., eds.). Harwood academic publishers, Amsterdam, The Netherlands, pp. 1–13.

    Google Scholar 

  16. Heegaard, N. H. H., Nilsson, S., and Guzman, N. A. (1998) Affinity capillary electrophoresis: important application areas and some recent developments. J. Chromatogr. B 715, 29–54.

    CAS  Google Scholar 

  17. Heegaard, N. H. H. and Kennedy, R. T. (1999) Identification, quantitation, and characterization of biomolecules by capillary electrophoretic analysis of binding interactions. Electrophoresis 20, 3122–3133.

    CAS  PubMed  Google Scholar 

  18. Chu, Y.-H. and Cheng, C. C. (1998) Affinity capillary electrophoresis in biomolecular recognition. Cell. Mol. Life Sci. 54, 663–683.

    CAS  PubMed  Google Scholar 

  19. Heegaard, N. H. H., Nissen, M. H., and Chen, D. D. Y. (2002) Applications of on-line weak affinity interactions in free solution capillary electrophoresis. Electrophoresis 23, 815–822.

    CAS  PubMed  Google Scholar 

  20. Rundlett, K. L. and Armstrong, D. W. (2001) Methods for the determination of binding constants by capillary electrophoresis. Electrophoresis 22, 1419–1427.

    CAS  PubMed  Google Scholar 

  21. Grossman, P. D. (1992) Factors affecting the performance of capillary electrophoresis separations: joule heating, electroosmosis, and zone dispersion, in Capillary electrophoresis (Grossman, P. D. and Colburn, J. C., eds.). Academic Press, Inc., San Diego, CA, pp. 3–43.

    Google Scholar 

  22. Vinther, A. and Söeberg, H. (1991) Temperature elevations of the sample zone in free solution capillary electrophoresis under stacking conditions. J. Chromatogr. 559, 27–42.

    CAS  Google Scholar 

  23. Berezovski, M. and Krylov, S. N. (2005) Thermochemistry of protein-DNA interaction studied with temperature-controlled nonequilibrium capillary electrophoresis of equilibrium mixtures. Anal. Chem. 77, 1526–1529.

    CAS  PubMed  Google Scholar 

  24. Receptor Biochemistry. (1990) (Hulme, E. C., ed.). IRL Press, Oxford.

    Google Scholar 

  25. Tao, L., Aspinwall, C. A., and Kennedy, R. T. (1998) On-line competitive immunoassay based on capillary electrophoresis applied to monitoring insulin secretion from single islets of Langerhans. Electrophoresis 19, 403–408.

    CAS  PubMed  Google Scholar 

  26. Tao, L. and Kennedy, R. T. (1997) Measurement of antibody-antigen dissociation constants using fast capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 18, 112–117.

    CAS  PubMed  Google Scholar 

  27. Tao, L. and Kennedy, R. T. (1997) Measurement of antibody-antigen dissociation constants using fast capillary electrophoresis with laser-indused fluorescence detection. Electrophoresis 18, 112–117.

    CAS  PubMed  Google Scholar 

  28. Tao, L. and Kennedy, R. T. (1996) On-line competitive immunoassay for insulin based on capillary electrophoresis with laser-induced fluorescence detection. Anal.Chem. 68, 3899–3906.

    CAS  PubMed  Google Scholar 

  29. Righetti, P. G., Gelfi, C., Verzola, B., and Castelletti, L. (2001) The state of the art of dynamic coatings. Electrophoresis 22, 603–611.

    CAS  PubMed  Google Scholar 

  30. Churaev, N. V., Sergeeva, I. P., Sobolev, V. D., and Derjaguin, B. V. (1981) Examination of the surface of quartz capillaries by electrokinetic methods. J. Colloid Interface Sci. 84, 451–460.

    CAS  Google Scholar 

  31. Heegaard, N. H. H. (1994) Determination of antigen-antibody affinity by immuno-capillary electrophoresis. J. Chromatogr. 680, 405–412.

    CAS  Google Scholar 

  32. Heegaard, N. H. H., Hansen, B. E., Svejgaard, A., and Fugger, L. H. (1997) Interactions of the human class II major histocompatibility complex protein HLA-DR4 with a peptide ligand demonstrated by affinity capillary electrophoresis. J. Chromatogr. A 781, 91–97.

    CAS  PubMed  Google Scholar 

  33. Chen, F. A., Kelly, L., Palmieri, R., Biehler, R., and Schwartz, H. (1992) Use of high ionic strength buffers for the separation of proteins and peptides with capillary electrophoresis. J. Liq. Chromatogr. 15, 1143–1161.

    CAS  Google Scholar 

  34. Martin, L. M. (1996) The use of ion-pairing reagents improves the separation of hydrophobic peptides by capillary electrophoresis, in Peptides: chemistry, structure and biology, (Kaumaya, P. T. P. and Hodges, R. S., eds.). Mayflower Scientific Ltd., Kingswinford, England, pp. 144–145.

    Google Scholar 

  35. Kornfelt, T., Vinther, A., Okafo, G. N., and Camilleri, P. (1996) Improved peptide mapping using phytic acid as ion-pairing buffer additive in capillary electrophoresis. J. Chromatogr. A 726, 223–228.

    CAS  PubMed  Google Scholar 

  36. Lambert, W. J. and Middleton, D. L. (1990) pH hysteresis effect with silica capillaries in capillary zone electrophoresis. Anal. Chem. 62, 1585–1587.

    CAS  Google Scholar 

  37. Bohlin, M. E., Kogutowska, E., Blomberg, L. G., and Heegaard, N. H. (2004) Capillary electrophoresis-based analysis of phospholipid and glycosaminoglycan binding by human beta2-glycoprotein I. J. Chromatogr. A 1059, 215–222.

    CAS  PubMed  Google Scholar 

  38. Bohlin, M. E., Blomberg, L. G., and Heegaard, N. H. (2005) Utilizing the pH hysteresis effect for versatile and simple electrophoretic analysis of proteins in bare fused-silica capillaries. Electrophoresis 26, 4043–4049.

    CAS  PubMed  Google Scholar 

  39. Ma, S. and Horváth, C. (1998) Capillary zone electrophoresis at subzero temperatures. III. Operating conditions and separation efficiency. J. Chromatogr. A 825, 55–69.

    CAS  PubMed  Google Scholar 

  40. Kajiwara, H. (1991) Application of high-performance capillary electrophoresis to the analysis of conformation and interaction of metal-binding proteins. J. Chromatogr. 559, 345–356.

    CAS  Google Scholar 

  41. Heegaard, N. H. H., Hansen, S. I., and Holm, J. (2006) A novel specific heparin-binding activity of bovine folate-binding protein characterized by capillary electrophoresis. Electrophoresis 27, 1122–1127.

    CAS  PubMed  Google Scholar 

  42. Rasmussen, B. W. and Bjerrum, M. J. (2003) Ca(2+) and Na(+) binding to high affinity sites of calcium-containing proteins measured by capillary electrophoresis. J. Inorg. Biochem. 95, 113–123.

    CAS  PubMed  Google Scholar 

  43. Vinther, A. and Soeberg, H. (1991) Mathematical model describing dispersion in free solution capillary electrophoresis under stacking conditions. J. Chromatogr. 559, 3–26.

    CAS  Google Scholar 

  44. Burgi, D. S. and Chien, R.-L. (1991) Optimization in sample stacking for high-performance capillary electrophoresis. Anal. Chem. 63, 2042–2047.

    CAS  Google Scholar 

  45. Heegaard, N. H. H., Jrgensen, T. J. D., Rozlosnik, N., Corlin, D. B., Pedersen, J. S., Tempesta, A. G., Roepstorff, P., Bauer, R., and Nissen, M. H. (2005) Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved β2 - microglobulin . Biochemistry 44, 4397–4407.

    CAS  PubMed  Google Scholar 

  46. Heegaard, N. H., Sen, J. W., and Nissen, M. H. (2000) Congophilicity (Congo red affinity) of different beta2-microglobulin conformations characterized by dye affinity capillary electrophoresis. J. Chromatogr. A 894, 319–327.

    CAS  PubMed  Google Scholar 

  47. Nelson, R. J., Paulus, A., Cohen, A. S., Guttman, A., and Karger, B. L. (1989) Use of Peltier thermoelectric devices to control column temperature in high-performance capillary electrophoresis. J. Chromatogr. 480, 111.

    CAS  Google Scholar 

  48. Cheng, Y. F. and Dovichi, N. J. (1988) Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence. Science 242, 562–564.

    CAS  PubMed  Google Scholar 

  49. Lee, T. T. and Yeung, E. S. (1996) Capillary electrophoresis detectors: lasers. Methods Enzymol. 270, 419–449.

    CAS  PubMed  Google Scholar 

  50. Tanyanyiwa, J., Leuthardt, S., and Hauser, P. C. (2002) Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis. Electrophoresis 23, 3659–3666.

    CAS  PubMed  Google Scholar 

  51. Pentoney, S. L., Jr., Quint, J. F., and Zare, R. N. (1989) On-line radioisotope detection for capillary electrophoresis. Anal. Chem. 61, 1642–1647.

    CAS  Google Scholar 

  52. Kautz, R. A., Lacey, M. E., Wolters, A. M., Foret, F., Webb, A. G., Karger, B. L., and Sweedler, J. V. (2001) Sample concentration and separation for nanoliter-volume NMR spectroscopy using capillary isotachophoresis. J. Am. Chem. Soc. 123, 3159–3160.

    CAS  PubMed  Google Scholar 

  53. Moini, M. (2004) Capillary electrophoresis-electrospray ionization mass spectrometry of amino acids, peptides, and proteins. Methods Mol. Biol. 276, 253–290.

    CAS  PubMed  Google Scholar 

  54. Whitt, J. T. and Moini, M. (2003) Capillary electrophoresis to mass spectrometry interface using a porous junction. Anal. Chem. 75, 2188–2191.

    CAS  PubMed  Google Scholar 

  55. Lyubarskaya, Y. V., Carr, S. A., Dunnington, D., Prichett, W. P., Fisher, S. M., Appelbaum, E. R., Jones, C. S., and Karger, B. L. (1998) Screening for high-affinity ligands to the Src SH2 domain using capillary isoelectric focusing-electrospray ionization ion trap mass spectrometry. Anal. Chem. 70, 4761–4770.

    CAS  PubMed  Google Scholar 

  56. Dunayevskiy, Y. M., Lyubarskaya, Y. V., Chu, Y.-H., Vouros, P., and Karger, B. L. (1998) Simultaneous measurement of nineteen binding constants of peptides to vancomycin using affinity capillary electrophoresis-mass spectrometry. J. Med. Chem. 41, 1201–1204.

    CAS  PubMed  Google Scholar 

  57. Lyubarskaya, Y. V., Dunayevskiy, Y. M., Vouros, P., and Karger, B. L. (1997) Microscale epitope mapping by affinity capillary electrophoresis-mass spectrometry. Anal. Chem. 69, 3008–3014.

    CAS  PubMed  Google Scholar 

  58. Chu, Y.-H., Dunayevskiy, Y. M., Kirby, D. P., Vouros, P., and Karger, B. L. (1996) Affinity capillary electrophoresis-mass spectrometry for screening combinatorial libraries. J. Am. Chem. Soc. 118, 7827–7835.

    CAS  Google Scholar 

  59. Chu, Y.-H., Kirby, D. P., and Karger, B. L. (1995) Free solution identification of candidate peptides from combinatorial libraries by affinity capillary electrophoresis/mass spectrometry. J. Am. Chem. Soc. 117, 5419–5420.

    CAS  Google Scholar 

  60. Preisler, J., Hu, P., Rejtar, T., Moskovets, E., and Karger, B. L. (2002) Capillary array electrophoresis-MALDI mass spectrometry using a vacuum deposition interface. Anal. Chem. 74, 17–25.

    CAS  PubMed  Google Scholar 

  61. Gelpi, E. (2002) Interfaces for coupled liquid-phase separation/mass spectrometry techniques. An update on recent developments. J. Mass Spectrom. 37, 241–253.

    CAS  PubMed  Google Scholar 

  62. Edwards, E. and Thomas-Oates, J. (2005) Hyphenating liquid phase separation techniques with mass spectrometry: on-line or off-line. Analyst 130, 13–17.

    CAS  PubMed  Google Scholar 

  63. Barcelo-Barrachina, E., Moyano, E., and Galceran, M. T. (2004) State-of-the-art of the hyphenation of capillary electrochromatography with mass spectrometry. Electrophoresis 25, 1927–1948.

    CAS  PubMed  Google Scholar 

  64. Jayawickrama, D. A. and Sweedler, J. V. (2003) Hyphenation of capillary separations with nuclear magnetic resonance spectroscopy. J. Chromatogr. A 1000, 819–840.

    CAS  PubMed  Google Scholar 

  65. Wolters, A. M., Jayawickrama, D. A., and Sweedler, J. V. (2002) Microscale NMR. Curr. Opin. Chem. Biol. 6, 711–716.

    CAS  PubMed  Google Scholar 

  66. Kolhed, M., Hinsmann, P., Svasek, P., Frank, J., Karlberg, B., and Lendl, B. (2002) On-line fourier transform infrared detection in capillary electrophoresis. Anal. Chem. 74, 3843–3848.

    PubMed  Google Scholar 

  67. Nirode, W. F., Devault, G. L., Sepaniak, M. J., and Cole, R. O. (2000) On-column surface-enhanced Raman spectroscopy detection in capillary electrophoresis using running buffers containing silver colloidal solutions. Anal. Chem. 72, 1866–1871.

    CAS  PubMed  Google Scholar 

  68. Connatser, R. M., Riddle, L. A., and Sepaniak, M. J. (2004) Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced raman spectroscopic detection. J. Sep. Sci. 27, 1545–1550.

    CAS  PubMed  Google Scholar 

  69. Li, Y., Jiang, Y., and Yan, X. P. (2005) On-line hyphenation of capillary electrophoresis with flame-heated furnace atomic absorption spectrometry for trace mercury speciation. Electrophoresis 26, 661–667.

    CAS  PubMed  Google Scholar 

  70. Li, Y., Yan, X. P., and Jiang, Y. (2005) Interfacing capillary electrophoresis and electrothermal atomic absorption spectroscopy to study metal speciation and metal-biomolecule interactions. Angew. Chem. Int. Ed. Engl. 44, 6387–6391.

    CAS  PubMed  Google Scholar 

  71. Mann, S. E., Ringo, M. C., Shea-McCarthy, G., Penner-Hahn, J., and Evans, C. E. (2000) Element-specific detection in capillary electrophoresis using X-ray fluorescence spectroscopy. Anal. Chem. 72, 1754–1758.

    CAS  PubMed  Google Scholar 

  72. Castelletti, L., Piletsky, S. A., Turner, A. P., Righetti, P. G., and Bossi, A. (2002) Development of an integrated capillary electrophoresis/sensor for L-ascorbic acid detection. Electrophoresis 23, 209–214.

    CAS  PubMed  Google Scholar 

  73. Bossi, A., Piletsky, S. A., Righetti, P. G., and Turner, A. P. (2000) Capillary electrophoresis coupled to biosensor detection. J. Chromatogr. A 892, 143–153.

    CAS  PubMed  Google Scholar 

  74. Stone, K. L. and Williams, K. R. (2002) Enzymatic digestion of proteins in solution and in SDS polyacrylamide gels, in The Protein Protocols Handbook (Walker, J. M., ed.) 2nd ed. Humana Press, Inc., Totowa, NJ, USA, pp. 511–521.

    Google Scholar 

  75. Ward, M. (2002) Pyridylethylation of cysteine residues, in The Protein Protocols Handbook (Walker, J. M., ed.) 2nd ed. Humana Press Inc., Totowa, NJ, USA, pp. 461–463.

    Google Scholar 

  76. Heegaard, N. H. H., Heegaard, P. M. H., Roepstorff, P., and Robey, F. A. (1996) Ligand binding sites in human serum amyloid P component. Eur. J. Biochem. 239, 850–856.

    CAS  PubMed  Google Scholar 

  77. Trapp, O. (2006) The unified equation for the evaluation of first order reactions in dynamic electrophoresis. Electrophoresis 27, 534–541.

    CAS  PubMed  Google Scholar 

  78. Gudiksen, K. L., Urbach, A. R., Gitlin, I., Yang, J., Vazquez, J. A., Costello, C. E., and Whitesides, G. M. (2004) Influence of the Zn(II) cofactor on the refolding of bovine carbonic anhydrase after denaturation with sodium dodecyl sulfate. Anal. Chem. 76, 7151–7161.

    CAS  PubMed  Google Scholar 

  79. Hilser, V. J. and Freire, E. (1995) Quantitative analysis of conformational equilibrium using capillary electrophoresis: Applications to protein folding. Anal. Biochem. 224, 465–485.

    CAS  PubMed  Google Scholar 

  80. Chu, Y. H., Lees, W. J., Stassinopoulos, A., and Walsh, C. T. (1994) Using affinity capillary electrophoresis to determine binding stoichiometries of protein-ligand interactions. Biochemistry 33, 10616–10621.

    CAS  PubMed  Google Scholar 

  81. Berezovski, M., Nutiu, R., Li, Y., and Krylov, S. N. (2003) Affinity analysis of protein-aptamer complex using nonequilibrium capillary electrophoresis of equilibrium mixtures. Anal. Chem. 75, 1382–1386.

    CAS  PubMed  Google Scholar 

  82. Berezovski, M. and Krylov, S. N. (2002) Nonequilibrium capillary electrophoresis of equilibrium mixtures - A single experiment reveals equilibrium and kinetic parameters of protein-DNA interactions. J. Am. Chem. Soc. 124, 13674–13675.

    CAS  PubMed  Google Scholar 

  83. Krylov, S. N. and Berezovski, M. (2003) Non-equilibrium capillary electrophoresis of equilibrium mixtures - appreciation of kinetics in capillary electrophoresis. Analyst 128, 571–575.

    CAS  PubMed  Google Scholar 

  84. Azad, M., Kaddis, J., Villareal, V., Hernandez, L., Silverio, C., Gomez, F. A. (2004) Affinity capillary electrophoresis to examine receptor-ligand interactions, in Capillary electrophoresis of proteins and peptides (Strege, M. A. and Lagu, A. L., eds.). Humana Press Inc., Totowa, NJ, pp. 153–168.

    Google Scholar 

  85. Seyrek, E., Hattori, T., Dubin, P. L. (2004) Frontal analysis continuous capillary electrophoresis for protein-polyelectrolyte binding studies, in Capillary electrophoresis of proteins and peptides (Strege, M. A. and Lagu, A. L., eds.). Humana Press Inc., Totowa, NJ, pp. 217–228.

    Google Scholar 

  86. Kuhr, W. G. (1998) Separation of small organic molecules, in Capillary electrophoresis. Theory and practice (Camilleri, P., ed.) 2nd ed., CRC Press, Boca Raton, pp. 91–133.

    Google Scholar 

  87. Heegaard, N. H. H. (2001) Capillary Electrophoresis, in Protein-ligand interactions: hydrodynamics and calorimetry (Harding, S. E. and Chowdhry, B. Z., eds.).Oxford University Press, Oxford, UK, pp. 171–195.

    Google Scholar 

  88. Horejsí, V. and Tichá, M. (1986) Qualitative and quantitative applications of affinity electrophoresis for the study of protein-ligand interactions: a review. J. Chromatogr. 376, 49–67.

    Google Scholar 

  89. Matousek, V. and Horejsi, V. (1982) Affinity electrophoresis: a theoretical study of the effects of the kinetics of protein-ligand complex formation and dissociation reactions. J. Chromatogr. 245, 271–290.

    CAS  Google Scholar 

  90. Heegaard, N. H. H. (1998) A heparin-binding peptide from human serum amyloid P component characterized by affinity capillary electrophoresis. Electrophoresis 19, 442–447.

    CAS  PubMed  Google Scholar 

  91. stergaard, J., Hansen, S. H., Jensen, H., and Thomsen, A. E. (2005) Pre-equilibrium capillary zone electrophoresis or frontal analysis: advantages of plateau peak conditions in affinity capillary electrophoresis. Electrophoresis 26, 4050–4054.

    Google Scholar 

  92. Winzor, D. J. (2006) A need for caution in the use of frontal analysis continuous capillary electrophoresis for the determination of ligand binding data. Anal. Biochem. 349, 285–291.

    CAS  PubMed  Google Scholar 

  93. stergaard, J., Schou, C., Larsen, C., and Heegaard, N. H. H. (2002) Evaluation of capillary electrophoresis frontal analysis for the study of low molecular weight drug-human serum albumin interactions. Electrophoresis 23, 2842–2853.

    Google Scholar 

  94. Galbusera, C. and Chen, D. D. Y. (2003) Molecular interaction in capillary electrophoresis. Curr. Opin. Biotech. 14, 126–130.

    CAS  PubMed  Google Scholar 

  95. Shimura, K. and Kasai, K. (1997) Affinity capillary electrophoresis: a sensitive tool for the study of molecular interactions and its use in microscale analysis. Anal. Biochem. 251, 1–16.

    CAS  PubMed  Google Scholar 

  96. He, X., Ding, Y., Li, D., and Lin, B. (2004) Recent advances in the study of biomolecular interactions by capillary electrophoresis. Electrophoresis 25, 697–711.

    CAS  PubMed  Google Scholar 

  97. Schou, C. and Heegaard, N. H. (2006) Recent applications of affinity interactions in capillary electrophoresis. Electrophoresis 27, 44–59.

    CAS  PubMed  Google Scholar 

  98. Hardingham, T. E. and Fosang, A. J. (1992) Proteoglycans: many forms and many functions. FASEB J. 6, 861–870.

    CAS  PubMed  Google Scholar 

  99. Heegaard, N. H. H. and Roepstorff, P. (1995) Preparative capillary electrophoresis and mass spectrometry for the identification of a putative heparin-binding site in amyloid P component. J. Capillary Electrophor. 2, 219–223.

    CAS  PubMed  Google Scholar 

  100. Chu, Y.-H., Avila, L. Z., Biebuyck, H. A., and Whitesides, G. M. (1992) Use of affinity capillary electrophoresis to measure binding constants of ligands to proteins. J. Med. Chem. 35, 2915–2917.

    CAS  PubMed  Google Scholar 

  101. Amini, A. and Westerlund, D. (1998) Evaluation of association constants between drug enantiomers and human alpha 1-acid glycoprotein by applying a partial-filling technique in affinity capillary electrophoresis. Anal. Chem. 70, 1425–1430.

    CAS  PubMed  Google Scholar 

  102. Busch, M. H. A., Carels, L. B., Boelens, H. F. M., Kraak, J. C., and Poppe, H. (1997) Comparison of five methods for the study of drug-protein binding in affinity capillary electrophoresis. J. Chromatogr. A 777, 311–328.

    CAS  PubMed  Google Scholar 

  103. Baba, Y., Tsuhako, M., Sawa, T., Akashi, M., and Yashima, E. (1992) Specific base recognition of oligodeoxynucleotides by capillary affinity gel electrophoresis using polyacrylamide-poly(9-vinyladenine) conjugated gel. Anal. Chem. 64, 1920–1925.

    CAS  PubMed  Google Scholar 

  104. Kraak, J. C., Busch, S., and Poppe, H. (1992) Study of protein-drug binding using capillary zone electrophoresis. J. Chromatogr. 608, 257–264.

    CAS  PubMed  Google Scholar 

  105. Chu, Y.-H., Lees, W. J., Stassinopoulos, A., and Walsh, C. T. (1994) Using affinity capillary electrophoresis to determine binding stochiometries of protein-ligand interactions. Biochemistry 33, 10616–10621.

    CAS  PubMed  Google Scholar 

  106. Heegaard, N. H. H. and Robey, F. A. (1992) Use of capillary zone electrophoresis to evaluate the binding of anionic carbohydrates to synthetic peptides derived from human serum amyloid P component. Anal. Chem. 64, 2479–2482.

    CAS  PubMed  Google Scholar 

  107. Gao, J. Y., Dubin, P. L., and Muhoberac, B. B. (1997) Measurement of the binding of protein to polyelectrolytes by frontal analysis continuous capillary electrophoresis. Anal. Chem. 69, 2945–2951.

    CAS  Google Scholar 

  108. Shimura, K. and Karger, B. L. (1994) Affinity probe capillary electrophoresis: analysis of recombinant human growth hormone with a fluorescent labeled antibody fragment. Anal. Chem. 66, 9–15.

    CAS  PubMed  Google Scholar 

  109. Shimura, K. and Kasai, K. (1995) Determination of the affinity constants of ConcanavalinA for monosaccharides by fluorescence affinity probe capillary electrophoresis. Anal. Biochem. 227, 186–194.

    CAS  PubMed  Google Scholar 

  110. Hernaiz, M. J., LeBrun, L. A., Wu, Y., Sen, J. W., Linhardt, R. J., and Heegaard, N. H. (2002) Characterization of heparin binding by a peptide from amyloid P component using capillary electrophoresis, surface plasmon resonance and isothermal titration calorimetry. Eur. J. Biochem. 269, 2860–2867.

    CAS  PubMed  Google Scholar 

  111. Heegaard, N. H. H. and Robey, F. A. (1992) Use of capillary zone electrophoresis to evaluate the binding of anionic carbohydrates to synthetic peptides derived from serum amyloid P component. Anal. Chem. 64, 2479–2482.

    CAS  PubMed  Google Scholar 

  112. Heegaard, N. H. H., Sen, J. W., Kaarsholm, N. C., and Nissen, M. H. (2001) Conformational intermediate of the amyloidogenic protein β 2-microglobulin at neutral pH. J. Biol. Chem. 376, 32657–32662.

    Google Scholar 

  113. Heegaard, N. H. H., Olsen, D. T., and Larsen, K.-L. P. (1996) Immuno-capillary electrophoresis for the characterization of a monoclonal antibody against DNA. J. Chromatogr. 744, 285–294.

    CAS  Google Scholar 

  114. stergaard, J., Schou, C., Larsen, C., and Heegaard, N. H. H. (2003) Effect of dextran as a run buffer additive in drug-protein binding studies using capillary electrophoresis frontal analysis. Anal. Chem. 75, 207–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Heegaard, N.H.H., Schou, C., Østergaard, J. (2008). Analysis of Proteins in Solution Using Affinity Capillary Electrophoresis. In: Zachariou, M. (eds) Affinity Chromatography. Methods in Molecular Biology™, vol 421. Humana Press. https://doi.org/10.1007/978-1-59745-582-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-582-4_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-659-7

  • Online ISBN: 978-1-59745-582-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics